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ADVANCED JOB SHOP SCHEDULING METHODS 
 

BUCHMEISTER, B. & PALCIC, I. 
 

Abstract: Scheduling is a decision-making process used on a regular basis in many 

manufacturing and service industries. It plays an important role in shop floor planning. 

Job shop is one of the most popular generalized production systems. A schedule shows 

the planned time when the processing of a specific job will start and will be completed 

on each machine that the job requires. Schedule is a timetable for both jobs and 

machines. Complex and mathematically involved scheduling methods require 

substantial and extensive knowledge. Since job shop scheduling problems fall mostly 

into the class of NP-hard problems, they are among the most difficult to formulate and 

solve. In the chapter, a selection of advanced job shop scheduling methods is 

represented: filtered beam search, constraint-guided heuristic search and genetic 

algorithms, all demonstrated with simple examples. 
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1. Introduction 

 

On the market, which is shaped by increasingly more demanding customers, the 

rising number of providers and the competitiveness between them, and right business 

and production strategy are the deciding factors of a company’s success (Baesler et al., 

2015). It is not enough only to keep up with the others. Today, success represents 

sustainability in introducing new standards and orientation toward the customer, to the 

quality and price of products, to flexibility, agility and promptness, to economising in 

resources and protection of the environment (Huang, 2010). There are an increasing 

number of companies, which produce mostly with a job shop system for a known 

customer. With competitive cost calculation and appropriate product quality, time is 

becoming the most important factor of business success. This is especially noticeable 

in job shop production, where adaptability and shortening of flow times decide on the 

business success or failure of the company (Buchmeister et al., 2004). 

Scheduling is as old as humankind is. It is about time and some optimisation. It is 

an act of defining priority or arranging activities to meet certain requirements, 

constraints or objectives. Time is always a major constraint. People schedule their 

activities so that jobs could be accomplished within the available time. Time to get up, 

time to work, to play, to sleep … Time is a limiting unrecoverable resource and we 

must schedule our activities to utilise this limited resource in an optimum manner. 

As the industrialized world develops, more and more resources are becoming critical. 

Machines, workers and facilities are now thought of as resources in production or 

service activities. Scheduling these leads to increased efficiency, utilization and 

profitability for the company (Yagmahan & Yenisey, 2009). 

We have to think about time all the time. We trade time for money. Efficient use 

of time is namely one of the greatest indicators of competitiveness. 

 

2. Role and impact of scheduling 

 

Scheduling is a decision-making process used on a regular basis in many 

manufacturing and service industries. These forms of decision-making play an 

important role in procurement and production, in transportation and distribution, and 

in information processing and communication (Blazewicz et al., 2007). The scheduling 

functions in a company rely on mathematical techniques and heuristic methods to 

allocate limited resources to the activities that have to be done. This allocation of 

resources has to be done in such a way that the company optimizes its objectives and 

achieves its goals. Resources may be machines in a workshop, crews at a construction 

site, or processing units in a computing environment. Activities may be operations in 

a workshop, stages in a construction project, or computer programs that have to be 

executed. Each activity may have a priority level, an earliest possible starting time and 

a due date. Objectives can take many different forms, such as minimizing the time to 

complete all activities, minimizing the number of activities that are completed after the 

committed due dates, and so on (Singh, 2014). 

Within scheduling in manufacturing in the chapter, a generic manufacturing 

environment and the role of its scheduling function will be described. Orders that are 
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released in a manufacturing setting have to be translated into jobs with associated due 

dates. These jobs often have to be processed on the machines in a work-station in a 

given order or sequence. The processing of jobs may sometimes be delayed if certain 

machines are busy. Preemptions may occur when high priority jobs are released which 

have to be processed at once. Unexpected events on the shop-floor, such as machine 

breakdowns or longer-than-expected processing times, also have to be taken into 

account, since they may have a major impact on the schedules. Developing, in such an 

environment, a detailed schedule of the jobs to be performed helps maintain efficiency 

and control of operations (Kaban et al., 2012). 

 

 
Fig. 1.  Information flow diagram in a manufacturing system (Pinedo, 2005) 
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The scheduling process also interacts with the production planning process, which 

handles medium-term to long-term planning for the entire organization. This process 

intends to optimize the firm’s overall product mix and long-term resource allocation 

based on inventory levels, demand forecasts and resource requirements (Velaga, 2013). 

Decisions made at this higher planning level may impact the more detailed scheduling 

process directly. Fig. 1 shows the information flow in a manufacturing system. 

 

3. Advanced scheduling methods 

 

3.1 Filtered beam search 

This method is based on the ideas of branch and bound. Enumerative branch and 

bound methods are currently the most widely used methods for obtaining optimal 

solutions to "NP-hard" scheduling problems. The main disadvantage of branch and 

bound is that it is usually extremely time consuming, because the number of nodes one 

must consider is very large (Fig. 2). 

 

 
Fig. 2.  Schematic representation of Filtered Beam Search 

 

Consider, for example, a single machine problem with n jobs. Assume that for 

each node at level k, jobs have been selected for the first k positions. There is a single 

node at level 0, with n branches emanating from it to n nodes at level 1. Each node at 

level 1 branches out into n–1 nodes at level 2, resulting in a total of n.(n–1) nodes at 

level 2. At level k, there are n!/(n–k)! nodes. At the bottom level, level n, there are n! 

nodes. Branch and bound method attempts to eliminate a node by determining a lower 

bound on the objective for all partial schedules that sprout out of that node. If the lower 

bound is higher than the value of the objective under a known schedule, then the node 

may be eliminated and its offspring disregarded. If one could obtain a reasonably good 

schedule through some clever heuristic before going through the branch and bound 

procedure, then it might be possible to eliminate many nodes. Even after these 

eliminations, there are usually still too many nodes to be evaluated. The main 

advantage of branch and bound is that, after evaluating all nodes, the final solution is 

known with certainty to be optimal (Tasic et al., 2007). 
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Filtered beam search is an adaptation of branch and bound in which not all nodes 

at any given level are evaluated. Only the most promising nodes at level k are selected 

as nodes to branch from. The remaining nodes at that level are discarded permanently. 

The number of nodes retained is called the beam width of the search. The evaluation 

process that determines which nodes are the promising ones is a crucial component of 

this method. Evaluating each node carefully, to obtain an estimate for the potential of 

its offspring, is time consuming. There is a trade-off here: a crude prediction is quick 

but may lead to discarding good solutions, whereas a more thorough evaluation may 

be prohibitively time consuming. Here is where the filter comes in. For all the nodes 

generated at level k, a crude prediction is done. Based on the outcome of these crude 

predictions, a number of nodes are selected for a thorough evaluation, and the 

remaining nodes are discarded permanently. The number of nodes selected for a 

thorough evaluation is referred to as the filter width. Based on the outcome of the 

careful evaluation of all nodes that pass the filter, a subset of these nodes (the number 

being equal to the beam width, which, therefore, cannot be greater than the filter width) 

is selected, from which further branches will be generated. 

Example 1: Consider the instance of 1││∑ wj Tj (using notation α│β│γ). The 

objective is to minimize the sum of the weighted tardinesses. Table 1 contains the basic 

data (all jobs are available at time zero; due dates are extremely low to expose the 

objective function).  

 

Job j 1 2 3 4   j  – job number 

pj 10 10 13 4  pj  – processing time of job 

dj 4 2 1 12  dj  – due date of job 

wj 14 12 1 12  wj – weight of job 

Tab. 1.  Data for four jobs and notation 
 

Because the number of jobs is rather small, only one type of prediction is made 

for the nodes at any particular level. No filtering mechanism is used. The beam width 

is chosen to be 2, which implies that at each level only two nodes are retained. The 

prediction at a node is made by scheduling the unscheduled jobs according to the ATC 

(Apparent Tardiness Cost) rule. With the due-date range factor: 

max

minmax

Ĉ

dd
R


       (1) 

R = 11/37 and the due-date tightness factor: 

max
ˆ

1
C

d
              (2) 

τ ≈ 32/37, the look-ahead parameter k, estimated by the following equations: 

5.0,26

5.0,5.4





RRk

RRk
       (3) 

is chosen to be 5. 
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A branch and bound tree is constructed with the assumption that the sequence is 

developed, starting from t = 0. So, at the jth level of the tree jobs are put into the jth 

position. At the level 1 of the tree, there are four nodes: (1,*,*,*), (2,*,*,*), (3,*,*,*) 

and (4,*,*,*), see Fig. 3. Using the ATC rule to the remaining jobs at each one of four 

nodes results in four sequences: (1,4,2,3), (2,4,1,3), (3,4,1,2) and (4,1,2,3) with 

objective values 408, 436, 814 and 440. Because the beam width is 2, only the first two 

nodes are retained. 

Each of these two nodes leads to three nodes at level 2. Node (1,*,*,*) leads to 

nodes (1,2,*,*), (1,3,*,*) and (1,4,*,*), and node (2,*,*,*) leads to nodes (2,1,*,*), 

(2,3,*,*) and (2,4,*,*). Applying the ATC rule to the remaining two jobs in each one 

of the six nodes at level 2 results in nodes (1,4,*,*) and (2,4,*,*) being retained and the 

remaining four being discarded. 

Two nodes at level 2 lead to four nodes at level 3 (the last level), (1,4,3,2), 

(1,4,2,3), (2,4,1,3) and (2,4,3,1). Of these four sequences, sequence (1,4,2,3) is the best 

with a total weighted tardiness equal to 408. This sequence is optimal. 

 

 
Fig. 3.  Beam search applied to 1││∑wjTj 

 

3.2 Constraint-guided heuristic search 

In many real-world situations, there is not really an objective. Rather it is required 

only to generate a feasible schedule that satisfies various constraints and rules. One 

approach for generating schedules in these situations is referred to in the literature 

(Pinedo, 2005) as constraint-guided search. This approach has been very popular 

among computer scientists and artificial intelligence experts. 

Constraint-guided search may be described best through an example. Consider a 

number of not necessarily identical machines in parallel. A job has to be processed only 
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on the one of the machines; for each job there may be a feasible set of machines Mj to 

choose from. Job j requires a processing time pj = 1, j = 1, …, n and has release date rj 

and the due date dj. The goal is to find a feasible schedule in which all jobs are 

processed within their respective time windows. In this case the optimal schedule has 

an objective of value 0 (perfect feasibility). 

Constraint-guided search may operate according to the following rules. Jobs are 

scheduled one at a time. When a job is scheduled, it is assigned to a specific time slot 

on a specific machine, which is still free. At the each iteration, an unassigned job is 

selected according to a set of job rules that have been arranged in some priority. The 

job rules specify whether the particular job actually can be processed on a given 

machine.  

The jobs can be ordered according to their criticality or flexibility; the job with 

the least flexibility is the most critical and has the highest priority. The flexibility of a 

job can be measured in several ways (flexibility in time – slack time, flexibility with 

regard to the number of appropriate machines, etc.). 

The machines also can be ordered in such a way that the machine with the least 

flexibility has the highest priority (the flexibility of a machine, measured by the number 

of jobs that can be processed on the machine). 

An important concept in constraint-guided search is constraint propagation. The 

assignment of a particular job to a given time slot on a given machine has implications 

with regard to the assignment of other jobs on the given machine and on other 

machines. These implications may point to the violation of hard constraints and may 

indicate that the associated part of the search space can be disregarded. 

Example 2: Consider the problem P3│rj, pj = 1, Mj│∑ Uj. Uj = 1, if Cj > dj, 

otherwise Uj = 0. We have three machines and nine jobs. The processing times, release 

dates, and due dates of the job are presented in Table 2. If the processing time of a job 

on a machine is infinity (∞), then the job cannot be processed on that machine. The 

goal is to find a feasible schedule with all jobs completed on time (Σ Uj = 0). 

 

Job j 1 2 3 4 5 6 7 8 9 

p1j   1 1   1     1 1 

p2j 1 1   1 1 1   1 1 

p3j 1 1   1 1   1   1 

rj 1 1 0 0 0 0 1 1 2 

dj 3 2 1 2 1 1 3 3 3 

Tab. 2.  Data for nine jobs 

 

There are nine timeslots and three on each machine. Each job has its own time 

window, which represents a set of constraints. For each job, a flexibility factor Фj can 

be calculated. In this example: Фj is the number of timeslots to which a job may be 

assigned on various machines. The flexibility factor Фj of job j is presented in Table 3. 

Instead of the flexibility of a machine, the flexibility of a timeslot on a machine is 

determined. It is defined as the number of jobs that can be processed during the 

timeslot. The flexibility factor Ф(i,l) of job timeslot (i, l ) is presented in Table 4. 
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Job j 1 2 3 4 5 6 7 8 9 

Φj 4 3 1 4 3 1 2 4 3 

Tab. 3.  Flexibility factor of nine jobs 

 

Machine 1 1 1 2 2 2 3 3 3 

Timeslot (1, 1) (1, 2) (1, 3) (2, 1)  (2, 2)  (2, 3) (3, 1) (3, 2)  (3, 3) 

Φ(i,l) 2 2 2 3 4 3 2 4 3 

Tab. 4.  Flexibility factor of job timeslot 

 

Sequence of jobs in increasing flexibility results in: 3, 6, 7, 2, 5, 9, 1, 8, 4. 

Priorities of the timeslots may result in the sequence (1, 3), (3, 1), (1, 1), (1, 2), (2, 1), 

(2, 3), (3, 3), (3, 2), (2, 2). 

Job 3 is selected first. It is checked to determine whether it is allowed to be 

processed in the timeslot (1, 3). It is not (too late). The next timeslot is tried (3, 1) – not 

on 3rd machine, and so on, until a timeslot is found during which it is allowed to be 

processed. Job 3 is then assigned to slot (1, 1). Job 6 is considered in the same manner 

and assigned to slot (2, 1). Continuing in this manner results in the following 

assignment – see Table 5. All the constraints are fulfilled. 

 

Timeslot (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) 

Job 3 2 9 6 8 1 5 4 7 

Tab. 5.  Assignment of jobs to timeslots 

 

After a job has been assigned, the flexibility factors of the remaining jobs to be 

assigned and the remaining timeslots available may change. It would have been 

possible to reorder the remaining jobs, as well as the remaining timeslots, based on the 

new flexibility factors. In the example above this was not done. 

Constraint-guided search does not always yield a feasible solution after the first 

pass. It may occur that when the last job has to be assigned, no feasible assignment is 

possible. In this case, the method has to rely on a postprocessing procedure, which, 

through pairwise interchanges, attempts to construct a feasible solution. 

 

3.3 Genetic algorithms 

Genetic algorithms (GA) are an optimization methodology based on a direct 

analogy to Darwinian natural selection and mutations in biological reproduction. In 

principle, genetic algorithms encode a parallel search through concept space, with each 

process attempting coarse-grain hill climbing. Instances of a concept correspond to 

individuals of a species. Induced changes and recombinations of these concepts are 

tested against an evaluation function to see which ones will survive to the next 

generation (Gao et al., 2007). The use of genetic algorithms (Fig. 4) requires five 

components: 

1. A way of encoding solutions to the problem – fixed length string of symbols. 

2. An evaluation function that returns a rating for each solution. 
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3. A way of initializing the population of solutions. 

4. Operators that may be applied to parents when they reproduce to alter their genetic 

composition such as crossover (i.e., exchanging a randomly selected segment between 

parents), mutation (i.e., gene modification), and other domain specific operators. 

5. Parameter setting for the algorithm, the operators, and so forth. 

 

 

Fig. 4.  Structure of a simple genetic algorithm 

 

Two basic encoding approaches, direct and indirect, are applicable. The direct 

approach encodes a job shop schedule as a chromosome and the genetic operators are 

used to evolve these chromosomes into better schedules. In the indirect approach, a 

sequence of decision preferences is encoded into the chromosome, for example 

scheduling rules for job assignments, and the genetic operators are applied to improve 

the ordering of the various preferences. A job shop schedule is then generated from the 

sequence of preferences (Nagano et al., 2008). 

A number of approaches have been utilized in the application of genetic 

algorithms (GA) to scheduling problems: 

1. Genetic algorithms with blind recombination operators have been utilized in job 

shop scheduling. Their emphasis on relative ordering schema, absolute ordering 

schema, cycles, and edges in the offsprings will arise differences in such blind 

recombination operators. 

2. Sequencing problems have been also addressed by the mapping of their constraints 

to a Boolean satisfiability problem using partial payoff schemes. This scheme has 

produced good results for very simple problems. 

3. Heuristic genetic algorithms have been applied to job shop scheduling. In these 

genetic schemes, problem specific heuristics are incorporated in the recombination 

operators (such as optimization operators based). 

Example 3: A simple genetic algorithm is used to treat the job shop problem. This 

algorithm was developed independently, without regard for the work of other 

researchers (Lestan et al., 2009). The intention was to make a simple algorithm, which 

will try to find the schedule with the smallest makespan. Only genetic operations are 

used in order to achieve this. It is possible to schedule a various number of jobs, but 
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neither release times nor due dates are considered. Only selection and permutation are 

used as genetic operations. The algorithm uses random moves to search for the optimal 

schedule in the solution space, which means that the solution is obtained without the 

help of heuristic methods. 

How to encode solutions to chromosomes to ensure feasible solutions is a key 

issue for genetic algorithms. In our algorithm, the preference list-based representation 

is used. In this encoding method, the operations are arranged in a certain order. It 

depends on this order, how the operations will be processed on the machines. It is very 

important, that the precedence constrains of operations of individual jobs are 

considered. This means, that the sequence of operations of a job must stay intact also 

in the encoded solution. How the encoding works is shown on a simple example. Table 

6 shows a 3 × 3 instance; 3 jobs (9 operations) must be scheduled on 3 machines (M1, 

M2, M3) to achieve the smallest possible makespan. 

 

 

Jobs 

Processing times Processing order 

Operations Operations 

1 2 3 1 2 3 

J1 29 78 9 machine M1 machine M2 machine M3 

J2 43 90 28 machine M1 machine M3 machine M2 

J3 91 85 74 machine M2 machine M1 machine M3 

Tab. 6.  Data for a 3 × 3 instance 

 

From the Table 6 it is possible to write the operation sequence for each job: 
 

   J1 (J1 M1 29) (J1 M2 78) (J1 M3 9) 

   J2 (J2 M1 43) (J2 M3 90) (J2 M2 28)  

   J3 (J3 M2 91) (J3 M1 85) (J3 M3 74) 
 

Job J1 must first be processed on machine M1 for 29 time units. After that on 

machine M2 for 78 units and the last is machine M3 for 9 units. Similar goes for the 

other two jobs. The schedule for this instance is encoded into a string, where the 

position of the operation in the string plays an important role. Operations are ordered 

with the help of a randomizer. Therefore, it is important to use a reliable randomizer. 

String making in our case looks like this: 
 

a) A list of first operations of all jobs has been made. 
 

   ((J1 M1 29) (J2 M1 43) (J3 M2 91)) 
 

b) From the list of first operations, one operation is chosen randomly; let’s say (J2 M1 

43). This operation is the first operation in the string. The operation is taken from the 

corresponding job and inserted into the string. 
 

   J1 (J1 M1 29) (J1 M2 78) (J1 M3 9) 

   J2 (J2 M3 90) (J2 M2 28)  

   J3 (J3 M2 91) (J3 M1 85) (J3 M3 74) 
 

  String: 

   ((J2 M1 43)) 
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c) Again, a list of first operations of all the jobs is made and an operation is randomly 

selected from the list; let’s say (J1 M1 29). This operation is taken from the 

corresponding job and inserted as second operation in the string. 
 

   J1 (J1 M2 78) (J1 M3 9) 

   J2 (J2 M3 90) (J2 M2 28)  

   J3 (J3 M2 91) (J3 M1 85) (J3 M3 74) 
 

  String: 
 

   ((J2 M1 43) (J1 M1 29)) 
 

d) The procedure is repeated until all the operations from the jobs are transferred into 

the string.  

If the procedure, described above, would be continued until the end, the string 

could look like this: 
 

 ((J2 M1 43) (J1 M1 29) (J1 M2 78) (J3 M2 91) (J2 M3 90)  

 (J3 M1 85) (J2 M2 28) (J1 M3 9) (J3 M3 74)) 
 

This string will be used later on for demonstrations. A closer look at the string 

reveals that the precedence constrains have been considered during the making of the 

string. Job operations in the string still have the same processing order, but now they 

are mixed together. Why this is so important is explained below. 

Because the string making is left to coincidence, it is possible to make many 

versatile strings (organisms) which are necessary for the initial population. 

Only feasible strings represent a solution to our problem and therefore it is very 

important that feasibility is maintained throughout the searching process. Because in 

our case the goal lies in the time optimization of schedules, we are interested in the 

makespan. Besides the makespan, we are interested also in the processing order on the 

machines. The Gantt chart (string evaluation) is done step by step with adding 

operations one after another. In our case, the operations are added directly from the 

string, from the left side to the right side. The operations, which are at the beginning of 

the string, have a higher processing priority than those at the end. This means, that the 

Gantt chart and the makespan depend only upon the order in the string. That is why it 

is so important, that the operation order in the string is according to the precedence 

constrains. Otherwise, the evaluation would give a false value. The Gantt chart for our 

string is shown in Fig. 5. 

 

 
Fig. 5.  Gantt chart for the 3 × 3 instance 
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String: 
 

 ((J2 M1 43) (J1 M1 29) (J1 M2 78) (J3 M2 91) (J2 M3 90)  

 (J3 M1 85) (J2 M2 28) (J1 M3 9) (J3 M3 74)) 
 

Because the use of graphic Gantt charts in programming would be annoying, 

Gantt charts in numerical form are used. These charts are not as synoptic as graphical, 

but it is possible to comprehend all the important data from them. The Gantt chart in 

Fig. 4 looks in numerical form like this: 
 

 M1 (0 J2 43) (43 J1 72) (241 J3 326) 

 M2 (72 J1 150) (150 J3 241) (241 J2 269) 

 M3 (43 J2 133) (150 J1 159) (326 J3 400) 
 

Genetic operations are the driving force in genetic algorithms. Which operations 

are reasonable to use for solving a certain problem depends on the encoding method. 

The only genetic operation, which is independent from encoding, is selection. Selection 

is the most simple of all genetic operations. In our algorithm, the tournament selection 

is used. Its purpose is to maintain the core of good solutions intact. This is done with 

transferring good solutions from one generation to the next one. Because selection does 

not change the organism (string), we have no problem with maintaining feasibility, 

which is not the case in all other genetic operations. The use of the crossover operation 

can be problematical in some cases. The crossover operation often produces infeasible 

offspring, which are difficult to repair. 

The only genetic operation besides selection, which is used in our algorithm, is 

permutation. The permutation is based on switching operations inside the organism. 

The organism, which will be permutated, is chosen with the selection. When executing 

the permutation it is necessary to consider the precedence constrains. The permutation 

procedure is described and shown on our string from Table 6: 
 

a) A random operation is chosen from the string; let’s say (J2 M1 43). 
 

String:  
 

((J2 M1 43) (J1 M1 29) (J1 M2 78) (J3 M2 91) (J2 M3 90)  

(J3 M1 85) (J2 M2 28) (J1 M3 9) (J3 M3 74)) 
 

b) The left and the right border for the chosen operation have to be defined. Because 

the chosen operation belongs to job J2, it is necessary to search for the first operation, 

left and right of the chosen operation, which belongs to job J2. If the operation does 

not exist, the border is represented by the end or the beginning of the string. In our 

case, the right border is represented by the operation (J2 M3 90) and the left border is 

presented by the beginning of the string. In the string, the space between the borders is 

marked with square brackets. 
 

String: 
 

([(J2 M1 43) (J1 M1 29) (J1 M2 78) (J3 M2 91)] (J2 M3 90)  

(J3 M1 85) (J2 M2 28) (J1 M3 9) (J3 M3 74)) 
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c) A random position between the brackets is chosen where the operation (J2 M1 43) 

is inserted; let us say in front of (J1 M2 78). 
 

String: 
 

((J1 M1 29) (J2 M1 43) (J1 M2 78) (J3 M2 91) (J2 M3 90)  

(J3 M1 85) (J2 M2 28) (J1 M3 9) (J3 M3 74)) 
 

This procedure randomly changes the chosen organism, which also changes the 

solution, which the organism represents. Because there is often necessary to switch 

more than one operation in the organism, it is possible to repeat the whole procedure 

over and over. 

Evolution parameters are parameters, which influence the searching procedure of 

the genetic algorithm. If we want to obtain good solutions, the parameters have to be 

set wisely. These parameters are: 

 selection pressure, 

 population size, 

 amount of change, made by genetic operation, 

 share of individual genetic operations in the next generation, 

 number of generations (stopping criterion), 

 number of independent civilizations. 
 

The selection pressure defines what kind of solutions will be used in genetic 

operations. If the selection pressure is high, then only the best solutions will get the 

chance. If it is low, then also worse solutions are used. The higher the selection 

pressure, the higher the possibility that the search will end up in a local optimum. If it 

is too low, the search procedure examines insignificant solutions, which protracts the 

whole search. 

When an organism is being modified, it is necessary to specify how much the 

genetic operation will change the organism. It is recommended that small and large 

changes are made to the organisms. This assures versatility in the population. 

Each genetic operation must make a certain amount of organisms for the next 

generation. At least 10 % of the next population has to be made with selection 

(Brezocnik, 2000), so that the core of good solutions is maintained. All the other 

organisms are created with other genetic operations. 

If the number of generations is multiplied with the size of the population, we get 

the number of organisms, which have been examined during the search. When solving 

complex problems, the number of organisms is greater than in easier cases. The 

question is, should the search be executed with a small population and a lot of 

generations or opposite. In most cases, a compromise is the best choice. 

Because the search with genetic algorithms bases on random events, it is not 

necessary that good solutions are obtained in every civilization. In most cases, the 

search stops in a local optimum. That is why it is necessary to execute multiple searches 

for a given problem. 

The algorithm was tested on the benchmark 10 × 10 instance (see the results in 

Table 7 for the data in Table 8), which was proposed by Fisher and Thompson (1963).  
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Rows contain the order of the operations for each job Ji: each entry (Mj, p) 

contains the code of machine Mj and the processing time pij on it. 

 

Parameter 10  10 

Population size 200 

Number of generations 500 

Number of independent populations 100 

Optimal solution 930 

Best solution obtained 941 

Tab. 7.  Evolution parameters and results for the 10 × 10 instance 

 

Jobs 
Operation sequence 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

J1 M1 29 M2 78 M3 9 M4 36 M5 49 M6 11 M7 62 M8 56 M9 44 M10 21 

J2 M1 43 M3 90 M5 75 M10 11 M4 69 M2 28 M7 46 M6 46 M8 72 M9 30 

J3 M2 91 M1 85 M4 39 M3 74 M9 90 M6 10 M8 12 M7 89 M10 45 M5 33 

J4 M2 81 M3 95 M1 71 M5 99 M7 9 M9 52 M8 85 M4 98 M10 22 M6 43 

J5 M3 14 M1 6 M2 22 M6 61 M4 26 M5 69 M9 21 M8 49 M10 72 M7 53 

J6 M3 84 M2 2 M6 52 M4 95 M9 48 M10 72 M1 47 M7 65 M5 6 M8 25 

J7 M2 46 M1 37 M4 61 M3 13 M7 32 M6 21 M10 32 M9 89 M8 30 M5 55 

J8 M3 31 M1 86 M2 46 M6 74 M5 32 M7 88 M9 19 M10 48 M8 36 M4 79 

J9 M1 76 M2 69 M4 76 M6 51 M3 85 M10 11 M7 40 M8 89 M5 26 M9 74 

J10 M2 85 M1 13 M3 61 M7 7 M9 64 M10 76 M6 47 M4 52 M5 90 M8 45 

Tab. 8.  The 10 job 10 machine instance (Fisher and Thompson, 1963) 

 

As it can be seen from Table 7, the algorithm did not manage to find the optimal 

solution for the problem, but due its simplicity, the algorithm was able to obtain good 

solutions.  

The number of possible schedules S (solutions) can be calculated with eq. (4), 

where m represents the number of machines and n represents the number of jobs. 

 

S = (n!)m          (4) 

 

So, for our case we get: S10×10 ≈ 4 . 1065 possible schedules. 

Because the algorithm is written in the LISP programming language, the search 

procedure took relatively long time. The best obtained solution deviates 1.2 % from 

the optimal solution. The best result was obtained in only 1 run out of 100 runs. 

The search procedure often falls in a local optimum. When this happens, it is very 

unlikely that the search will proceed to a better solution, because a memory function is 

not present. This means that the quality of the final solution depends on the initial 

population and pure chance. So, the search procedure must be repeated several times 

for a specific problem (Tay & Ho, 2008). 
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4. Conclusion 

 

Scheduling in praxis means knowing:  

 The status and priority of each order on the shop floor.  

 Which machines and other resources (e.g. sub components, materials, tooling and 

operators) are required for each order.  

 When these resources are required and when they will be available. When do we 

expect the resources to arrive or be available? 
 

Scheduling balances due dates, machine capacity, tooling and labour to develop a 

realistic plan of action to move orders through various operation steps (Saravanan et 

al., 2008). 

Advanced scheduling methods are potential tools for making (near) optimal and 

feasible schedules (Jarboui, 2008). For the applications in praxis, it is important to 

understand how the resulting schedule is generated, unless the schedule will not be 

used. It is hard to understand why operations are prioritised in a certain sequence for 

the operators that only see a dispatch list. The resulting sequence of operations has to 

take into account all capacity, inventory, material availability and delivery time 

constraints and, at the same time, it should increase throughput and minimize the 

operational costs (Lei, 2008). 

Some classes of manufacturing models, which already have been considered in 

the literature, may in the future be generalized and extended in new directions. Models 

considered in the literature often focus on a single objective. In practice, it may very 

well be the case that several objectives have to be considered at the same time and that 

the user would like to see a parametric analysis in order to evaluate the trade-offs. 
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