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GRIDS AND APPLICATION FOR DYNAMIC 

SOLUTIONS 
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Abstract: The purpose of this paper is to develop and generalize the improved 
method of grids (method of finite differences) described in (Kollats, 1969). For 

obtaining of interpolation polynomials, the matrixes and method of uncertain 
coefficients are used. The essential simplification of the calculation formulae is 
received. The question of accuracy of the obtained solution is examined. The 
numerical results are presented. The use of overlapping of interpolation intervals 
allows increasing an accuracy of the solution. The calculation results show that it is 
possible to adjust the accuracy of the solution either by changing the degree of the 
interpolation polynomial or with the help of overlapping of intervals. 
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1. Introduction        

  

In this paper we focus on partial differential equations in which of the 

parameters are not known exactly but affected by a certain amount of uncertainty, 

and hence described in terms of random variable (Marc, 2007). We shall confine 

ourselves to consider only the differential equation with zero regional conditions. In 

the case of general boundary conditions it is required to apply the matrixes, which are 

interpolated on Ermit. These matrixes turn out less elegant and more cumbersome, 

than the Vandermond matrixes, as both values of function and their derivative will be 

defined in this case. The method of uncertain coefficient can be used as for the 

traditional method of grids as for the “improved method of grids", which has been 

developed Kollats (Kollats, 1969) especially for solution of partial differential 

equations. The method of grids allows to reduce a task of continuous analysis to a 

problem of solution of system of the algebraic equations. The accuracy of the used 

interpolation polynomials is established by the well-known formulas from literature 

(nassar & Eissa, 2003). This situation is quite common in the engineering practice. 

The theory of the method of finite differences is based on the theory of the 

approximation of functions, when values of them in discrete points are known. For 

this purpose, the interpolation polynomials obtained by the method of the uncertain 

coefficients are applied. Such approximation is possible to execute without resorting 

to the finite difference schemes (Jensen, 1972).  

 

2. Approximation by a Method of Uncertain Coefficients 

 

Let's consider the closed interval [a, b], which is a part of wider interval [A, B] 

(Fig.1). We set a task to approach the given function y=f (х). The task of dot 

approximation "forward" is solved by a method of uncertain coefficients (Miln, 

1951). Arbitrary located an interval [a, b] on an axis х with length l=ba, is divided 

on n of equal parts of length h = (b-a)/n. Points of division or so-called nodes are 

designated in order of their following or increasing nxxx ,,
2

,
1

,
0

x   (Fig.1). Let's 

take into account, that hix  ; and ni ,,2,1,0  . To these values ix  correspond to 

the values of approximation function nyyy ,,
2

,
1

,
0

y  . 

It is required to find interpolation polynomial coefficients  xnP  of degree n  

 

   nxnaxaxaaxnP  ...2
210

,  (1) 

 

which graph passes consistently one time through all values yi, i = 0, 1, 2, …, n 

and only once. 
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Fig. 1 The closed interval of [a, b] 
 

For simplification of the task we make substitution of coordinates and use the 

dimensionless argument  , applying the following formulae 

  

 ;
n

abax  ;0 n  
ab
axn


  (2) 

 

With the help of the formulas (2) it is possible to make transfer of a beginning of 

coordinates to a point х = a, that is to change scale on an axis х. After replacement of 

arguments х in the interpolation polynomial (1) to dimensionless   we receive 

 

   n
nnP   ...2

210
 (3) 

 

The mutual transition from the polynomial (1) to the polynomial (3) and back is 

carried out with the help of the transformation formula (2). It is possible to write 

down the polynomial  nP  in matrix symbolic as follows 
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1

0

...321
 (4) 

 

Substituting in the polynomial  nP  the integer values of dimensionless 

argument   and appropriate values of function y, the following system of the 

equations for calculation coefficients   is obtained: 

 



Aryassov, G.; Barashkova, T. & Gornostajev, D.: Estimation of the Improved Meth... 

 

 

 

 

 

 

  nyn
nnnnnnP

yn
n

nP

yn
n

nP

ynnP

ynP





















...
2

2
10

.......
3

3...
2

9
1

3
0

3

2
2...

2
4

1
2

0
2

1
...

210
1

0
0...00

0
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 (5) 

 

This can be written down in a matrix form 

 

      ynW    (6) 

 

Where  

 nW Vander monde matrix, which elements is degrees of a natural line 

numbers. 

 

 
 

































nnnn

n

n

nW

...21

.....
3...931

2...421

1...111

0...001

 (7) 

 

The Vander monde matrix is not particular; therefore finding the inverse matrix 

to it is not difficult task and does not require the large efforts (Korn et al.). 

Multiplying the equation (6) at the left on   1W  the line of coefficients    is 

determined 

 

      yW 1  (8) 

 

Substituting expression (8) in the formula (4) we can present interpolation 

polynomials in the matrix form 

 

           ynW
T

nynW
T

n
P 1...211 







                                         (9) 

 

Approximate a broken line consisting of straight lines y = 0 and  

y = -12 ( - 2), by the fourth degree polynomial (Fig.2). 
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Fig. 2. Approximate a broken line 

 

The calculation results of coefficients    by the formula (9) are given in a 

table form 

 

 4!   1
nW  y =   

24 0 0 0 0  0  0 

-50 96 -72 32 -6  0  -10 

35 -104 114 -56 11  0  17 

-10 36 -48 28 -6  -12  -8 

1 -4 6 -4 1  -24  1 

 

As the matrix   1
nW  is multiplied on 4!, the coefficients    then should be 

divided on 4! =24. 

In case of approximation of function on the extended interval [A, B], which can 

consist of several intervals of a type [a, b], are used the earlier received formulae. It is 

allowed, that intervals [a, b] can overlap each other or be imposed against each other. 

On Fig. 3. one of such possible cases is shown. 

 

 

Fig. 3. The approximation function on the extended interval 
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The corresponding to an interval [a, b] ordinates are denoted у0, у1…, уn. The 

corresponding to the next interval [a, b]

 ordinates are denoted 

nyyy ,...,
1

,
0

. The 

ordinates 
0

,
3

yy  and 
1

,
4

yy  coincide both on the location and on size. Intermediate 

ordinate in area, where there is "overlapping (Fig.3) is possible to receive by two 

ways: 

 

1) Substituting in interpolation polynomials a value   from the interval [a, b], 

2) Substituting in interpolation polynomials value   from the interval [a, b]*. 

 

In general case the given substitutions give various, but close results, this is 

explained by inexactitude of interpolation formulae. It is known, that the error of 

interpolation formulae is less in middle of an interval of interpolation and is great 

outside of it. In particular it is necessary to take into account this circumstance in 

calculation a derivative. Therefore it is expedient to use overlapping of intervals, 

especially, if the high order derivatives are to be calculated. 

For preservation the accuracy of derivative calculations a higher order 

polynomial should be applied in comparison with polynomial which used for 

calculation of the function. The numbering of nodes is established in case of 

approximation of function in the extended interval [A, B]. In general case this 

numbering will differ from nodes numbering in the interval [a, b]. 

It should be noticed, that the beginning of coordinates of interpolation 

polynomials can be changed arbitrarily, but to change the order of following of nodes 

and corresponding ordinates is not allowed in any event. 

 

3. Interpolation of Derivatives Function 
 

From the formula (3) follows, that for calculation a derivative of interpolation 

polynomial is sufficient to differentiate only matrix-line  
T
. Other multipliers of 

expression (9) are invariant to operation of differentiation.  

Above-mentioned statement in identical degree concerns to operation of 

integration. For example, third derivative from the polynomial (9) will be defined as 

 

 
        ynW

T
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nnn
d

Pd 13
21...2120246000
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3 
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
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


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


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
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


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


 (11) 

 

It is possible with the help of the formula (11) to calculate derivative value in 

any point   of the interval [a,b]. For example, at   = 1 the third derivative value is 

equal  

 

  
       yWnnn

d

Pd
n

T 1

1

3

3

21...120246000











  (12) 
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It is important to know in the method of grids the derivative values in nodes of 

interpolation. These values are easy obtained from the formulae (12) if suppose, that 

  accepts consistently the values as:  = 0, 1, 2,…,n. Then the line of m
th

 derivative 

from [ ]
T
 becomes a square matrix. At n = 4 matrixes-columns or the vector-column 

second derivative from  nP  will be 
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 
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d
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
 , (13) 

 

Where    4  is a matrix, which turns out as a result of the given operations. The 

lower index of the matrix specifies the polynomial order, and upper index - the 

derivative order.  

For example, the expression (12) for third derivative will be written down as  

 

 
       yW

d

Pd 1
4

´́ ´
43

4
3







 (14) 

 

The foregoing formulae for differentiation of functions, which are given in 

discrete points, are generalization of the classical formulae of numerical 

differentiation. Their error can be appreciated similarly, as it is carried out in the 

classical methods.  

Let's introduce a matrix   m
nO , which simultaneously carries out both operations 

of interpolation and differentiation of function given by a vector  y  

 

                                       1 nWm
n

m
nO                                                    (15) 

 

With the help of (15) the transition from the given differential equation to the 

appropriate system of the linear algebraic equations becomes simpler. 

We shall confine ourselves to consider only the differential equation with zero 

regional conditions. In the case of general boundary conditions it is required to apply 

the matrixes, which are interpolated on Ermit. These matrixes turn out less elegant 

and more cumbersome, than the Vandermond matrixes, as both values of function 

and their derivative will be defined in this case. 

So we have 

 

                                        fysyryg                                            (16) 

 

With y (0) = 0 and y (n) = 0 
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Where       rg ,  and   s  are diagonal matrixes with the corresponding values 

of functions     rg ,  and  s  in points or nodes of interpolation,  f  is free 

function in the right part in the same points or nodes. 

Taking into account (14) and (15) the system of the linear algebraic equations in 

a matrix form will be 

 

                                 )( fysynOrynOg                                 (17) 

 

This system of equations (17) according to the distributive operation can be 

written down in more convenient form 

 
               )( fysnOrnOg   

Or 

                            )(fyD                                                                         (18) 

 

Where             snOrnOgD  






 ´  is a matrix operator of given differential 

equation. In case of constant coefficients the matrix operator becomes simpler. As all  

m matrixes, included in equation (18) can be calculated beforehand, the 

inferring (composing) of the equations becomes considerably simpler. The solution of 

system of the algebraic equations (18) can be carried out with the help of a inverse 

matrix 

 

     )(1 fDy                                                        (19) 

 

Such solution is especially convenient in case of a large number of the right 

parts  )(f . In this case the inverse matrix   1D  will carry out a role of resolving 

equation. 

 

4. Numerical Results 

 

For an illustration we consider some elementary examples. Euler problem about 

a longitudinal bend. The differential equation of deflection curve in bend of beam 

(Fig.4) loaded by the longitudinal force F and using a dimensionless coordinate , 

can be written as 

 ;4;
4 l

xlx   0
2

2
 v

d

vd 


,                                         (20) 

 

Where  

               
EI

Fl
16

2
                                                               (21) 
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 With the boundary conditions     00  lvv . 

 

 

Fig. 4. Euler problem 

 

The matrix operators  2O   and  4O   will be accordingly 
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Using the expression (18) and operator 




 

2
O (22) the characteristic system of the 

algebraic equations is obtained from equation (20), taking into account overlapping 

of intervals 
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
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Which gives the critical force value for II (see fig.4) 

 

 
2

38.9

l

EI
kp

F   

With an error 5.2 %. 
 

Applying the operator 




 

4
O  (23), according to the expression (18) in equation 

(20) without taking into account the overlapping of intervals, we receive the 

characteristic system of the equations with the same number of unknowns 

 

 

33
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2
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1
8

!4
23

32
2

60
1

32
13

8
2

12
1

40

vvvv

vvvv
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Which gives the value  
 

 
2

395.9

l

EI
kp

F    

 

With an error 5.0 %. 

Increasing the division numbers or nodes (Fig.5), using operator




 

2
O , we 

receive  
 

 
2

79.9

l

EI
kp

F    

 

With an error 0.81 %. 

 

 

Fig. 5. Numerical results  
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Applying operator 




 

4
O  in case of double number of nodes (Fig.5) and using the 

overlapping of intervals so, that a beginning of an interval [a, b] is consistently 

combined with the nodes of the extended interval [A, B] one after another 0, 0, 1, 2, 

3, 4, 4, the characteristic system of the equations is obtained, where  
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The value of critical force will be 
2

87544.9

l

EI
kp

F   with an error 0.05 %. 

 

5. Two Dimensional Problem 

 

The above-mentioned technique for receiving ordinary derivative can be 

extended to calculation a partial derivative. Let's describe one possible variant. Let's 

accept additional notations and consider with the purpose of simplification a two-

dimensional problem only. We assume that a function U of two variable is 

transformed using the dimensionless abscissa  and ordinate  . The transformation is 

carried out with help of formula (2). The integer variables   and   form a square grid 

(Fig.6). 

 

 

Fig. 6. Two dimensional problem 
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Nodes of the grid are defined by two indexes. The first index corresponds to 

integer abscissa  , second – to ordinate  . It is expedient to join points laying on the 

same horizontal or vertical, that means having one and same abscissa or ordinate. 

Such association of points we shall name a vector-abscissa, with ordinate k and to 

denote  jkU  or vector-ordinate with abscissa i and to denote 








iU , where k = 0, 1, 2, 

…, r; nr  ; i = 0, 1, 2, …, s; ns . Further in abbreviated form, accordingly “a vector 

k “and “a vector i“. 

The symbol   m
nO  remains, but two indexes to it are added. They are written in 

brackets at the left and specify coordinates of a point or a vector-abscissa or a vector-

ordinate, along which the partial derivative are calculated. The upper index shows, 

according to the accepted notation, the order of the partial derivative. 

Calculations of the partial derivative are carried out according to the above-

mentioned rules of numerical differentiation. Interpolation polynomial, appropriate to 

a vector








iU , is differentiated on . Let's consider an example, where the 

interpolation is carried out on five points, that is n = 4. We assume that it is necessary 

to find the second partial derivative from the interpolation polynomial in the point 

(2, 1). Taking into account the expression (10) and the notation (13) yields  
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To increase the accuracy of calculation of this derivative UO
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  22

4)2,4(
  in 

the point (4, 2) transfer the beginning of coordinates of the interval [a, b] to the point 

(4, 2). It will correspond to differentiation of the interpolation polynomial, which is 

defined by a vector








2
U ,  = 2, 3, 4, 5, 6.  

The above-mentioned derivative can be calculated as  
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The calculation of partial derivative with respect of variable  is made by a 

similar way. 

Mixed partial derivative are calculated by the same rules, which are applied to 

interpolation polynomials along axes   and . In case of numerical differentiation on 

  it is necessary to use so much vectors abscissa, how many points the used operator 

demands at numerical differentiation on . For example, at n = 4 five vectors are 

required. The result of calculation mixed derivative does not depend on the order of 

differentiation on   and . For increase of accuracy it is necessary to use overlapping 

of intervals. 

Let's explain by an example. Let it is required to find a magnitude of fourth 

mixed derivative in a point (2, 1). This operation, taking into account the entered 

notation will be written down so  
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Here vector 
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The calculation of the operator 
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The required mixed derivative, expressed through values of the function 








 ,
U  

in twenty-five points taking into account expressions (27) and (28), will have the 

following scalar expression 
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If the interpolation will be carried out on three points (square parabola), that the 

second derivative operators in all nine points will be identical. In this case the fourth 

mixed derivative in the central point (1, 1) will be 
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From general formula (26) we shall receive well-known result. Such approach 

for calculation derivative allows rather easily changing a step of a grid and number of 

nodes taken into account. In the case of change of the step it is necessary to resort to 

overlapping of intervals so that in any point the nodes of two next, adjacent intervals 

would coincide. In case of discrepancy of nodes it is necessary to calculate the 

interpolation polynomial values on square-law interpolation or more exact. 
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6. Conclusion 

 

The received formulae allowed to carry out the approximation of functions and 

their derivatives not resorting to differences as it is made in a classical method of 

grids (method of finite difference). The use of overlapping of interpolation intervals 

allows to increase an accuracy of the solution. The calculation results show that it is 

possible to adjust the accuracy of the solution either by changing the degree of the 

interpolation polynomial or with the help of overlapping of intervals. That is the main 

difference not only from usual, but also from the “improved” method of grids. The 

essential simplification of the calculation formulae is received, in particular case they 

are the L. Kollats' formulae. Their receiving is carried out with the help of matrix 

notable symbolic.  

The received results can be applied to the solution of boundary problems of 

various classes, problem of eigenvalues etc. In particular, this is supposed to use the 

given approach for calculating the stress condition in threaded joints (Timoshenko, 

Arzyassov & Strizhak, 1999, Haris & McCrew, 1992). The last is especially urgent in 

vibrodiagnostic of structures, designs, machines, equipment, industrial and civil 

buildings and so on. The used matrix symbolic gives the convenient tool for 

realization of calculations with the help of computers. The possibility to omprove of 

methodoloqical basis of the Metrological assurance. Metrological assurance governs 

the quality of the products. Significance of metrological assurance is particularly 

obvious at the machine-building enterprises. Precision is the most important and 

decisive product-quality index. When solving the tasks of diagnostics the 

requirements to the precision of measuring devices are tighten by 1.5-1.6 times every 

year (Yosida, 1984, Aryassov & Barashkova, 2009, Aryassov & Petrishenko, 2009, 

Aryassov & Petrishenko, 2008). In this connection measuring systems integrated into 

the net-communications of the enterprises become more and more necessary. At 

present there is disparity between possibilities of modern technological equipment 

and obstacles in the tasks of quality control both of technological process and 

manufactured products. The principle of production metrological assurance 

improvement is very urgent under existing conditions of manufacturing. It is 

necessary to create measuring information systems using the latest achievements of 

micro- and optoelectronics with computer processing of measuring results. Important 

feature of such systems is a possibility of measurements intellectualization. It is 

possible to improve present measuring complexes using modern technologies. 

Creation of a series of interference measuring systems with submicron and nano-

metric precision – is the guarantee of quality and safety.  
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