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ON STABILITY OF NONLINEAR SYSTEMS  
AND APPLICATION TO APM MODELING 
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Abstract: The chapter deals with the investigation of nonlinear systems stability, a 
characteristic exponent and asymptotic stability. It also deals with the Lyapunov 
transformation to carry out a linear system whose matrix elements are functions of a 
system with a constant matrix. The examination of different methods for the 

construction of Lyapunov functions of nonlinear systems. The stability of systems with 

changeable parameters as well as the application of nonlinear systems control theory 
to the problems of "artificial pneumatic muscle - APM" control have also been 
investigated in the chapter.  
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1. Introduction 
       

The stability of a given system is often defined in the sense that the system is 

capable of returning to an equilibrium if a signal acting, which led the system out of 

this state, finished. This definition is sufficient for a linear system, its stability, 

however, can be defined in a different way, e.g. a linear system is stable if and only if 

its response to an arbitrary bounded input is bounded. There are several definitions of 

a nonlinear system stability. Many of them have a limited utilization and were 

defined for specific cases. In general, the processes going on in linear and nonlinear 

systems can be expressed by a mathematical model, which actually is a system of 

differential equations. Lyapunov stability theory enables to investigate the system 

stability without the necessity of solving either differential equations of the given 

order or a system of differential equations. A. M. Lyapunov proposed two methods in 

order to investigate the stability. Lyapunov first method enables to consider the 

nonlinear system stability according to an approximate linear model, (local stability). 

Lyapunov second method enables to consider the stability or the asymptotic stability 

in a certain area Ω, in general with the linear or nonlinear system, (of both excited 

and unexcited system). When solving the stability problem, the success of the method 

lies with the investigator’stability to find a suitable function (the so called Lyapunov 

function)as well as to determine its definiteness, (Athans & Falb, 1966, Lyapunov, 

1950, Jadlovská et al., 2011, Hrubina & Jadlovská, 2002, 2005, Hrubina,2008).  

This chapter will deal with the investigation of nonlinear systems stability 

described by a vector differential equation, a characteristic exponent and an 

asymptotic stability. It will also deal with the Lyapunov transformation as well as the 

stability of the systems with variable coefficients of the system of differential 

equations. The examination of different methods for the construction of Lyapunov 

functions of nonlinear systems with the demonstration on the selected problems as 

well as the application of acquired knowledge to the modeling and control of a 

defined nonlinear system are also included. 

 

2. System Stability and Characteristic Exponent 

 

We will consider a homogeneous linear vector differential equation (or a 

homogeneous linear system of differential equations)in the form 

 

 )().()( tt xAtx                                                                 (1) 

where matrix individual elements  

 

 
))(()( tat ijA

                                                                  (2) 

  

are continuous functions in the interval ),( a . For the presentation of the 

Lyapunov lemma on characteristic exponents and for its deeper understanding, we 

will use two integral inequalities. 
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Lemma 1. (R.Bellman, T.H.Gronwald). Let f(t)and g(t)be nonnegative 

continuous functions on the interval ,,0  t and let c be a nonnegative constant. 

Let for 0tt   be the following inequality valid 

 

 dgfctf

t

t

)(.)()(

0



                                         (3) 

then also for 0tt   it holds 
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t

t

                                              (4) 

  

Proof. The main idea of the proof is that at first we assume that 0c , whereas 

the right-hand side of (3)is also positive and follows of this inequality ( for 0tt 

)thence, by the integration within the limits tt ,0 , we will obtian the inequality 
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which is the equivalent to the inequality (4)which is being proved. 

Let c = 0. If in this case the right side of (3)is equal to zero, then f(t)= 0 and it 

holds (4). Obviously, we also have to consider such existing t, for which it holds 

 

  ,0)(.)(

0

  dgf
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                                                           (5) 

  

In the process of proving, we will find out that the relation (5)wil be equal ti 

zero, which is a contradiction, since (5)differs from zero. 

Lemma 2. ( R. Bellman, T. H. Gronwald ). Let f(t)be a positive function and 

g(t)be a nonnegative function on the interval ( a, b), and let both functions on this 

intervale are continuous, and let for the arbitrary ),(, 21 batt   it holds 
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Then for btta  0  the following inequality is satisfied 
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Further on, we will deal with the investigation of stability of the systems 

described by the differential equation (1). In doing so, the characteristic exponents 

will play a similar role to the roots of the characteristic equation for the system of 

differential equations with constant coefficients. At first we will mention two 

theorems on stability which do not make use of the notion of a characteristic 

exponent.s 

Theorem 1. A linear system described by the equation (1)is stable in the sense 

of Lyapunov in the interval ,,0  t  if all the solution to the equation (1)are 

bounded functions in the interval  ,0t .  

Theorem 2. (R. Bellman ). Let all the solutions to the vector differential 

equation  

 

  )(A )( tt xx                                                              (8) 

 

with a constant matrix of ( n , n)type be stable in the sense of Lyapunov, or let 

all the roots of the equation det A = 0 have negative real parts. Let  tB matrix of 

 nn ,  type, where its elements are continuous functions in the interval  ,0t  and 

let the integral be expressed in the form  

 

  ,0.)(

0




 d
t

B                                                            (9) 

  

Then all the solutions to the equation 

 

    )(.)()( tt yBAy                                                          (10) 

  

are stable in the interval  ,0t  in the sense of Lyapunov. 

 

2.1 Characteristic Exponent  

First, we will present stability conditions of linear systems with variable 

coefficients. The basic notion is that of a characteristic exponent of the function 

introduced by A.M. Lyapunov. 

Definition 1. A characteristic exponent of a complex function f(t)of a real 

variable t is called a number. 

 

       ttsuplim fl
-1

nf
t 

                                                          (11) 

  

In order to explain this notion by which a growth velocity of a function is 

characterized, it is sufficient to realize the following fact. A module of the given 

function can be expressed in the form  
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ttetf ).()( 
 

whereas  

  

)(ln.)()( 1 tftt 
 

  

Asymptotic behaviour of this function α(t)for t → ∞ is expressed by the relation 

(11). Obviously for the real α it holds 

 

  )( te  
It is possible to derive many basic properties of a characteristic exponent. 

Lemma 3. Let for m > 0 and for t > to be 

 
mttf )(
 

 

then  0))((  tf   

 

The assertion is a direct consequence of the relation (11). 

Lemma 4. Let φ(t)be a complex function defined for all t > to and bounded 

  
ct )(

  
 

then  ce tt )( )(.   

Lemma 5. Let for t > to be defined the functions )(),( tgtf  ans let for this t them 

satisfy the inequality  

 
)()( tgtf 

, 

 

then there is  )()( gf    

 

The assertion follows from the relation (11)since the logarithm is an increasing 

function of a real variable.  

Lemma 6. Let f(t)be defined for t > to and let its characteristic exponent be finite  

   )( f   
  

then for each ε the following relations are valid 
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If, on the contraty, for some α the equality (14)is valid for the function f (t)then  

 

    )( f   
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If the equality (15)is valid, then 

 

   )( f                                                                  (16) 

  

Lemma 7. For the characteristic exponent of the sum of a finite number of the 

functions fk (t)definit for t > to , the following inequality holds 
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If all characteristic exponents are finite and if there exists the index p, 

np 1 , such that  
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Lemma 8. Let the function fk (t)and ck (t), k= 1, 2, ...,n be definit for t > to 

and let the function ck (t)be bounded. Then for the characteristic exponent of a 

linear combination the following inequality is valid 
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Definition 2. Let the function f (t)be defined and let for 0tt   there exists a 

definite integral, a primitive function to the function f (t)in terms of Lyapunov will be 

called the function F (t)given by the rule 

  

0)()()(

0

  ffordftF
t

t



 

0)()()(  


ffordftF
t



 
The characteristic exponent of the primitive function in terms of Lyapunov is 

not higher than that of a related subintegral function. The characteristic exponent of 

the function F(t)matrix is equal to the characteristic exponent of its norm, i.e. for an 

arbitrary selected norm. 
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Theorem 3. ( A. M. Ljapunov ). If the matrix (2)in the equation (1)is norm 

bounded ( we can assume an arbitraty norm ). 

 

Ct)(A , 

 

 Then every non-zero solution  tx  has the infinite characteristic exponent. 

Now we can carry out a closer investigation of the set of characteristic 

exponents of the solution to the linear system described by the equation (1)with a 

bounded matrix (2). 

Lemma 9. Non-zero vector functions xi(t), i = 1, 2, ..., m, definited on the 

interval  ,0t  and having mutually different characteristic exponents are linearly 

independent. The proof of the lemma can be done by a contradiction.  

Definition 3. A set of all finite characteristic exponents of the solutions to the 

system of differential equations (nonlinear in general)is called a spectrum of this 

system. First, let us assume the system of first order linear differential equations a 

matrix, whose elements are constants (1). In general, each component of the solution 

to this system can be expressed in the form of a linear combination 
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where Pi(t)are the polynomials in t and λi are eigennumbers of the matrix A the 

roots of the equation  

 
0)(  EAdet  

thus it is 

 

 
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and a characteristic exponent of the solution x(t)is thus equal to a real part of 

some of the matrix A  eigennumbers. In the sense of the definition 2. Spectrum is 

identical to the sets of real parts of the matrix A . The case in which the A  matrix in 

(2)has changeable elements will be described in the following theorem. 

Theorem 4. Spectrum of the system of linear homogenous differential equations 

(1)of the m –th order is a finite set of numbers  

 

nmwherem  ,...111 
                                  (19) 

 

Necessary and sufficient conditions for asymptotic stability of the solution to the 

system with a matrix whose elements are constant is that the roots of the 

characteristic equation have negative real parts. Similarly, for the system with a 
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matrix whose elements are functions of the parameter, we will show that the 

characteristic exponent is negative, (Lyapunov,1950, Barbašin & Krasovskij,1954).  

 

2.2 Asymptotic Stability of a Vector Differential Equation and a Charateristic 

Exponent  

Theorem 5. In the sense of Lyapunov, for the asymptotic stability of a linear 

homogeneous system described by the vector equation (1)it is sufficient that its 

maximum characteristic exponent is negative. 

Using the characteristic exponents, it is possible to characterize a set of solutions 

to the linear homogeneous system as follows, let  

   

   )(),....,(),( 21 ttt nxxx                                                       (20) 

  

be a fundamental system of solutions to the equation (1)and let  

  

  njjj .....,,2,1,)(  x                                                   (21) 

  

We remark that the numbers (21)are not necessarily mutually different.  

Let us denote  
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 From the above, it follows that  
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In general, the solution to the system (1)has the form 
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where jc  are the constants, 
t

j
jet


 )(  are linear independent solutions (20), j  are 

the elements for the matrix (2)spectrum and )(tj  have the property (23). 

Let all the numbers (21)be finite and let the n – tuple (21)be created by mutually 

different numbers k  , k = 1,2, ....,m, where, certainly, m ≤ n. Let k  be a number of 

solutions (20), which have a characteristic exponent k . In dependence on a selected 

fundamental matrix (20), let us denote it  X , we can construct a number 
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Fundamental systems with a minimum number s(X)are sometines called normal. 

According to Lyapunov, it is possible to derive a low estimation of a number (25).  

Lemma 10. Let there be given the system (1)whose spectrum (19)contains only 

finite numbers and let X(t)be its fundamental matrix. Then the number (25)satisfies 

the inequality 

 

  




t

t
t

dsp
tt

s

0

)(
1

suplim)(
0

AX                                               (26) 

   

Where the symbol )(Asp  is used to denote the matrix A trace, i.e. the sum of the 

elements on the main diagonal.  

 

3. Lyapunov Transformation 

 

When investigating the stability of solutions to homogeneous linear systems (1) 

in some cases it is possible to find a linear transformation 

 

  )().()( ttt xLy                                                              (27) 

   

which will change a system (1)with A(t)matrix to the system 

 

    )(tt Byy                                                           (28) 

 

with a constant matrix. If during this transformation the characteristic exponents 

are not changed, it is possible to solve the problem of stability of the system (1)by 

means of known methods. 

 

Definition 4. Let matrix L(t), whose elements have continuous first derivatives 

in the interval ),0  t
 is called Lyapunov matrix, if  

 

a)   tLsup  and  tLsup  , ),0  tt ; are finite numbers  

 

     b) ),0).(det 0  ttktL  

 

The corresponding transformation (27)is called Lyapunov transformation. 

Lemma 11. The transformation(27), in which the matrix L(t)is the Lyapunov 

matrix in terms of the definition 4, does not change the characteristic exponent, i.e. 

  
)(x(y)   

   

The important result related to the issue of transformability to a system with a 

constant matrix while preserving the spectrum was published by N.P.Yurigin. The 

following lemma is valid: 
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Theorem 6 . A linear system described by the equation (1), can be transformed 

by the Lyapunov transformation with the matrix L(t)to the system with a constant 

matrix B if at least one its fundamental matrix X (t)can be expressed in the form 

 

 ttt .exp)()( BLX                                                      (29) 

 

Let us mention another different method of transformation of the problem 

refferend to asymptotic stability of a system with a time-varying matrix to the 

problem of stability of the system with a constant matrix. For this purpose, we first 

will define the following: 

  

Definition 5. The two systems described by vector differential equations 

 

   
  2,1,,  itf ii xx i                                                   (30) 

 

are called asymptotically equivalent when each solution kx  of any of both 

systems corresponds with the solution lx  of the second system, thus 

 

  0))()((lim 


tt lk
t

xx                                                    (31) 

  

 A simple criterion of asymptotic equivalence for the systems with o constant 

matrix was created in 1946 by an American mathematician N. Levinson. His Lemma 

is used here without a proof because it is rather lengthy, (Codington & Levinson, 

1955). 

 

Lemma 12. If all solutions of the system (28)with a constant matrix are bounded 

on the interval  ,0t  and if the matrix C(t)whose elements are continuous 

functions on the interval  ,0t  satisfies the inequality 

 

  


 d
t0

)(c                                                                     (32 

then the system )())(( tt xCB)(x t   (33) 

  

is asymptotically equivalent to the system (28). 

An interesting consequence of Levinson´s lemma is the asymptotic behaviour of 

the solution to the system  

  )()()( ttt XCX                                                                  (34) 

  

where the matrix C(t)satisfies the inequality (32). This system is in fact 

asymptotically equivalent to the system 
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0)( ty  
 

and each component of the vector )(tx of the system (34)converges for t →+∞ to 

some constant, on the contrary, for an arbitrary constant vector nRc there exists 

such solution )(tx  to the system (34)that 

 

  
cx 


)(lim t

t .                                                    (35) 

 

4. Stability of Systems with Variable Coefficients  

 

Differential equations which are used to describe the systems with variable 

parameters, have time-varying coefficients; they will be denoted )(tai  time functions. 

The stability of the systems with variable parameters can be secured only in a certain 

time interval. Beyond this interval, the system can be instable, (Jadlovská et al.2011). 

 

4.1 Basic Relation  

We will investigate the system with variable parameters described by the 

differential equation  

 

 )()()()()(.....)()( 2021

)(

2 tutxtatxtatxta n

n                             (36) 

 

 )(2 tx  is an output value, )(tu  is an input value. Our task is to find a relation 

between the input and the output values of the investigated system for such a case 

that the system is in an equilibrium until the moment when the input signal starts 

acting. The solution is considered from the moment when the input signal is applied. 

For this moment it holds: 

 

  )1(,....,2,1,0|)( 0

)(

2  ntx t                                        (37) 

 The solution to the equation (36)will be obtainedby the variation of constants 

methods. The considered solution is searched for in the form 

 

  )()(...)()()()()( 22112 tttttttx nn                                   (38) 

  

where )(ti  are linear independent particular solutions to the homogeneous 

equation, )(tj  will be determined in such a way that after inserting the expression 

(38)into (36)we obtaint the identity. 

Thus we obtain the solution in the form:  

                               dvvuvtgtx
t


0

2 )(),()(                                                        (39) 

In order to explain the physical substance of the ,  vtg , , function, we will 

investigate the case in which at the moment t = ξ for the system input there is 

introduced a signal in the form of the Dirac impulse, i.e. 
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      0  , vvvu    
 

If we apply the exppresion (39)and the known equality 

 

)()().(  fdtttf 


  
 

Thus we obtain an impulse transition function of the system, which is described 

by the equation (38) 

 

),()().,(
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 tgdvtvtg
t


 

 

The impulse transition function is called the system response ( which before the 

beginning of the signal acting was in an equilibrium)to the input signal in the form og 

the Dirac impulse. Considering a mathematical point of view, ),( tg  is the solution to 

the differential equation  
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with the initial conditions 
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The impulse transition function can also be applied to a more general case for 

the systems with changeable parameters to solve the equation in the form: 
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with the initial conditions  

 

)1(,...,2,1,0,0|),()(  ntw t  


 
 In this case, ),( tw  represents an impulse transition function of the systems with 

the changeable parameters of a general form. The ),( tw  function is related to the 

),( tg  function according to the relation 
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4.2 Determination of a Parametric Transfer Function 
The analysis of systems with variable parameters almost never utilises direct 

relationships between input and output variables, but the Laplace and Fourier 
transforms are used instead. These transforms are used to simplify the calculation and 
perform a simple transfer to the frequency domain. The use of the mentioned 
transforms for the analysis of the systems with variable parameters is of a great 
practical importance and extends the possibilities of the analytical investigation of 
automatic control systems. Significant results in this field were achieved by 
(L.A.Zadech, (1953, Hrubina & Jadlovská, 2005, Jadlovská et al.2005). 

Let us assume that for the input signal of the system with variable parameters 
there exists Fourier integral  

 

  dvejtx tj






 


)(
2

1
)( 11 X                                                  (43) 

 
where )( jX is a complex relative amplitude of the )(1 tx  function spectrum. 

Instead of the function )(1 tx  connected to the input of the system at the moment t 

= 0, there will operate now an „infinite number” of sinusoidal oscillations starting at  
t = -∞. In the relation for the output variable, this factor has to be respected by 

moving the lower limit of integration  
 






t

dxtwtx  )(),()( 12                                  (44) 

 
If we substitute the expression (43)to the equality (44)and we replace the order 

of integration, after a simple modification we obtain 
 




 ddetwejtx tjtj .),()(
2

1
)( )(

12  


















 X

 
  
If we introduce the denotation    
  

  detwtjW
t

tj .),(),( )(






 
We can write  




 dejtjWtx tj

i .)(),(
2

1
)(2 





 X

 
 
If we use the known methods to convert the Fourier transform to the Laplace 

transform, we can write the following expressions 
 

dsestsW
j

tx

jc

jc

st .)(),(.
2

1
)( 12 












x

                            (45) 
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 


 detWtsW

s

ts .),(),( )(

 
  (Poznyak, 2008, Tripathi, 2008, Hrubina & Jadlovská, 2005).  

The expression (45)is a more general expression of the known expression for the 

transfer of the system with constant parameters. They differ only in the parameter t, 

which occurs in the function W(s, t). In connection with this fact, the function W(s, 

t)will be called a parametric transfer function of the system. The searched output 

value is simply determined from the relation 

  
)(),(),( 12 sXtsWtsX   

 

The relation (45)is primarily used to determine the parametric transfer function 

which can be used for the stability control of the system with variable parameters. 

 

5. Methodology for Constructing the Lyapunov Function 

 

For nonlinear differential equations of a lower order we can find a simple 

physical interpretation of the Lyapunov theory and based on it desing a suitable 

Lyapunov function  xV  . This method is often used in theoretical mechanics, 

robotics, etc.; with its help we can clarify the relations between the Lyapunov 

stability theory and some of the theories of optimal systems, especially the 

Pontryagin maximum principle and dynamic programming, (Hrubina, 2008). 

 

5.1 Constructing the Lyapunov Function based on the Physical Analogy 

Let us consider a simple mechanical system spring- mass- damper, in which a 

directive force  xf  and a damping force  xg   are nonlinear. The motion of the 

system can be expressed by the differential equation 

  

         00 0,00 xxxxxfxgx                                      (46) 

  

With the conservative system, the damping is   0xg  and the total energy is 

constant. If this system is solved in the phase level with the coordinate 

,, 21 xxxx  then (46)is expressed in the form 

 

 
 12

21

xfx

xx








                                                            (47) 

 

For     0000 11  fandxatxf  the system has one equilibrium in the 

beginning. The trajectories are closed curves surrounding the beginning and the 

following relation is valid for them  

 
 

2

1

1

2

x

xf

dx

dx

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By the integration we obtain the trajectory equation 

  

  
1

0

11

2

2

2

x

contdxxf
x

 
 

The first member represents a kinetic energy and the second one represents a 

potential energy. Their sum is the total energy  21 , xxE  of a moving system. Thus, 

the trajectories of the system are the curves are the total energy of the conservative 

system. The change with time of the total energy is zero. 

 

       0, 122112221  xfxxxxfxxxxE 
 

 

5.2 Constructing the Lyapunov Function of a Nonlinear System by analogy to 

the Linear System 

  

Let us consider a nonlinear system described by the differential equation 

 

     0 xfxxx                                                     (48) 

  

Which corresponds to the system 

 

21 xx   

    2112 xxxfx                                               (49) 

 

Now let us consider the linear system 

 

 21 xx                                                       (50) 

  2212 .xaxfx   
  

For which we will construct the Lyapunov function of the first type, i.e. we will 

consider such function that its time derivative is negative semidefinite  

 

   2

2221 , xaxxV 
                                                (51) 

 

Therefore, we will search for the Lyapunov function in a quadratic form:  

 
2

2222112

2

11121 2),( xkxxkxkxxV   
 

Of which by a derivation we will obtain a set of three equations in three 

unknowns and their values will be : 2
1

2212211 ,0,1  kkk a  , thus 
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    2

2

2

1121
2

1
, xxaxxV                                          (52) 

Since this function does not depend on the coefficient 2a  , it can be used for the 

Lyapunov function of the first type, for example, for the system 

 

  21112

21

. xxxax

xx








 

 

In order to construct the Lyapunov function of the first type for the system (49), 

it is necessary to replace the first member on the right-hand side of the equation (52). 

The values 11 xa , eventually  1xf  represent the force acting on the mass point, which 

keeps it on the move. The value 2

11
2

1
xa  corresponds to the potential energy. 

Therefore, let us consider the function 

 

     2

2

0

21

1

2

1
, xdfxxV

x

                                           (53) 

which is identical to the function (52)if   111 xaxf  . We simply ascertain that  

 

    2

2121 ., xxxxV 
 

 

if the condition   ,01 x  is satisfied and at the same time if for   0.,0  xxfx  

the function  21 , xxV  is the Ljapunov function of the first type for the given problem 

because then the right-hand side of the equality (53)is positive definite, (Malkin, 

1966). 

 

5.3 Energy-based Method for the Lyapunov Function Constructing 

Let the given nonlinear system be described by a nonlinear differential equation 

 

      tuxgxxfx   .                                            (54) 

 

where the function  tu represents an input signal to the system. The differential 

equation (54)is equivalent to the system of first order differential equations 

 

 
     tuxxfxgx

xx





2112

21

.


                                      (55) 

 

which can be expressed by one equation 
 

    11211122 udxdxxxfdxxgdxx   

 



DAAAM INTERNATIONAL SCIENTIFIC BOOK 2013 pp. 257-276 CHAPTER 11      
 

 

For the application of the energy-based method, we will denote  xEs  energy 

accumulated in the system and  xE1  interactive energy, then, after a slight 

modification, we obtian the equation 
 

     11212211 udxdxxxfdxxdxxg                                       (56) 

 

The system under investigation will be srable if, with the increasing time, an 

interactive energy (the right-hand side of the equation (56))decreases, i.e. 
 

   011211  xuxxxfE                                                   (57) 

  

Thus, the system is stable if  
 

         
!

0

1

2

21 00,0,`00.

x

atgdgxfandxxf                         (58) 

  

In the relation (58), the integral expresses a positive value of the system energy. 

   

6. Control of the APM non Linear System  

 

From the theoretical point of view, modelling and control of a pneumatic 

actuator, called “artificial pneumatic muscle” (APM), is a complex problem. The 

APM control is considerably complicated owing to its simple design, especially 

because of its nonlinearity, air compressibility, time varying properties as well as the 

difficulties in the analytical modelling, Fig 1a, b. 

In general, APM is investigated from the viewpoint of the theory of nonlinear 

systems, since the mathematical model is expressed by a second order nonlinear 

differential equation in the form  
 

      uKBM  xxxxx                                                (59) 

 

or, assuming that a total mass is unity, i.e. 1M ; and the remaining physical 

values have a usual meaning , whereas the nonlinear functions are denoted    xx 21 , ff 

, then the equation (59)can be expressed as follows: 

 

       *

21 uff  xxxxx                                              (60) 

 

This equation is equivalent to the system of the first order differential equations  

  

 
   xxfxxfux

xxxxxx

212

2121 a









                         (61) 

or in the matrix expression 
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2

1
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1




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     txtxty 1                                           (63) 

 

   

Fig. 1. The basic design of the artificial pneumatic muscle (a), its functions (b) 

 

Further on, we assume that nonlinear functions    1221 , xfxf  can be expressed by 

means of second order polynomials, i.e. 

 

   
    1112

2221

xxKxf

xxBxf





                                                      (64) 

  

and let us write 

 

 

  011

2

121

021

2

222

axaxaxK

bxbxbxB





                                               (65) 

 

The  2,1,0, iab ii  coefficients can be obtained by the identification of the 

measured values 

 

    xKxK 1  represents a model (inflation and deflation – hard spring) 

    xBxB 2  represents a model (inflation and deflation),(Malkin, 1966). 

 

7. Lyapunov Function and Law of Control 

 

If there is a mathematical model (APM)designed, which is represented by a 

second order nonlinear differential equation, it is possible to express a Lyapunov 

function and a control:  
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      FuffM  xxxxx 21
                                           (66) 

      dfxMV

x


0

2

2

2
2

1
                                                 (67) 

   2

12 xxfxFV                                                         (68) 

Let us denote the xd(t)reference trajectory and let u(t)be clearly known, then the 

relations (60), (61)are valid. For a feedback after a linearization, it is possible to write 

a dependence:  
 

  xxxxfxxfu d
  221112 )()(                                     (69) 

  

Then the system  
 

  21 xx       

  dd xxxx   12 
  

  

is stable. Based on this it follows that 
 

  dd xxxx    22                                           (70) 

  

By virtue of Lyapunov theory, it is possible to show that the derivatives of the 

reference trajectory )(txd  are of the exponential order, thus the solutions  tx1  and  

 tx2 are exponentially stable, (Hrubina, 2008). 

 

8. Conclusion 

 

The contribution of the paper consists in the processing of the achieved results 

based on a considerably wide theoretical part on stability of linear and nonlinear 

systems expressed by a mathematical model which is represented by a homogeneous 

linear system of differential equations (a homogeneous linear vector differential 

equation)with changeable coefficients based on Lyapunov first and second method. 

In order to solve the problems of stability defined by a linear vector differential 

equation with the A(t)changeable matrix, Bellman, Gronwald and Lyapunov lemmas 

and theorems were applied. This refers to the theorems utilizing the defined notion of 

a characteristic exponent, a matrix spectrum, but especially the Lyapunov 

transformation. 

The essence of the presented methods of solution applied to the problems of 
asymptotic stability of the system with a time varying matrix lies in the application to 
the problem of the system stability with a constant matrix. The mentioned possibility 
of the problem solving is proved by means of the Lyapunov transformation and 
Levinson theorem. Another contribution lies in the solution of the problems of 
stability of the systems with changeable parameters which are described by a system 
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of differential equations with time-varying coefficients. The paper presents the 
solution to the problem with the utilization of the variation of constants method and 
the notion of impulse transition function of the system. The presented theoretical 
knowledge is applied to the control of the APM nonlinear system. 
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