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Abstract 

 

A Digital Twin (DT) replicates physical entities virtually and accurately mirrors their behaviour and condition. The 

number of Scopus database publications mentioning "digital twin" in their abstract increased from 51 to 2381 between 

2016 and 2020. With the growing demand for DTs, there is a need for software to create and run them. While Unity has 

often been used for DT creation in research, its suitability for this purpose remains unexplored. This thesis aims to 

investigate Unity's suitability by creating a DT of a factory. The DT includes Kuka and UR5 robots, as well as linear and 

rotary actuators. Communication between the DT and physical system is established using ROS. Tests were conducted to 

measure the ROS connection latency and the accuracy of robot movements. Latency was tested under different scenarios: 

regular operation, reduced GPU power, and additional CPU load. Although latency was generally low, additional CPU 

load had a significant influence on it. The accuracy and repeatability of robot movements were assessed using the ISO 

9283:1998 standard as a guide. Compared to their physical counterparts, the robot's movements exhibited significantly 

worse accuracy and repeatability by orders of magnitude. The robots controlled using the ArticulationBody script showed 

large positioning errors. 

 

Keywords: Digital Twin; ROS; Unity 

 

 

1. Introduction 

 

Industry 4.0 has become a transformative global influence, revolutionizing industries. Deloitte's 2019 survey 

revealed that 74% of executives anticipated its substantial impact, 88% of leaders in other industries and 92% of IT 

executives agreed on its influential role [1]. Using Cyber-Physical Systems and Artificial Intelligence, Industry 4.0's 

implementation enhances flexibility, resource efficiency, and product adaptation to individual consumer needs [2]. A 

key factor to achieving these benefits is the concept of Digital Twins (DT). A DT virtually replicates a physical product, 

machine or system to mimic their condition and behaviour as closely as possible through an array of simulations [3]. 

The goal of a DT is to mirror the behaviour and condition of a physical counterpart. To achieve this one DT can consist 

of multiple simulations [3]. The Unity engine includes multiple relevant simulation features, like the Nvidia PhysX 

physics engine and allowing customization via C# scripts. Unity Technologies further supports developers in the 

robotics field with additional packages geared towards robotics, including robot control and Robot Operating System 

(ROS) integration [4]. These features make Unity an attractive option to researchers. The result is that the Unity game 
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engine is already commonly employed in academic DT simulations. Many of these focus on visualization and did not 

evaluate the simulation accuracy of Unity in their studies [5–7].  

The aim of this work is to analyse the accuracy of Unity’s simulations regarding robot movement and the ROS 

connection. 

 

2. Materials and methods 

 

The physical and digital systems consist of three Kuka KR 6 R900 sixx robots, two UR5 robots mounted on linear 

rails, a Festo tripod EXPT-45, and an eXtended Transport System by Beckhoff in an oval configuration, featuring six 

movers. There are also various small linear and rotational actuators, see Figure 1. The DT was developed using Unity 

version 2021.3.8f1. All throughout development and testing a PC equipped with an 8-Core Ryzen 7 5800X CPU running 

at 3.8 GHz, an Nvidia Geforce RTX 3070 GPU, and 32GB of RAM was used. 

 

 
Figure 1 View of the DT in Unity including the Kuka, UR5 and Delta robots, the eXtended Transport System and, shown in red, the 

various smaller moving components.  

In order to measure the movement accuracy, it is divided into two components, pose accuracy and timing 

accuracy. The timing is given by the data of the physical twin. The connection between the physical and DT is realised 

using ROS. For the timing the latency of the ROS connection is examined. The pose accuracy and repeatability of the 

robots is measured using the standard ISO 9283:1998 as a guide [8]. 

 

3. Practical realisation 

 

To measure the variables mentioned above a DT was created. The models of the factory were available as 

SolidWorks files. Two methods were used to convert the models from CAD files to formats which can be imported into 

Unity. The first method, visualised in Figure 2, was used for the robots and actuators, except for the Delta robot. They 

were exported from SolidWorks as Unified Robotics Description Format (URDF) files using the URDF Exporter Addon. 

The URDF files include the links, joints and geometry, which were set in the Addons interface in SolidWorks. The URDF 

files were then imported into Unity using the URDF Importer package. The importer creates the robots as nested 

GameObjects with the ArticulationBody script attached to each link. The joint settings are automatically taken from the 

URDF file. 

 

 
Figure 2 Visualisation of the software and file types to import the robots into Unity. 
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In the second method, shown in Figure 3, the models were exported from SolidWorks as Virtual Reality Modelling 

Language (VRML) files. The files were then imported into Blender and optimised, by: 

• Combining the meshes into meaningful objects. 

• Setting the origins. 

• Cleaning up the geometry. 

• Deleting unnecessary geometry. 

• Reducing the vertex count.  

• Removing excess materials. 

• Assigning new materials. 

  

Once the geometry was optimised the models were exported as FBX files, in this format the models were imported 

into Unity.  

 

 
Figure 3 Visualisation of the software and file types to import other geometry into Unity. 

The connection to the physical twin was established using the ROS TCP Endpoint node in combination with the 

ROS TCP Connector package in Unity. The physical twin publishes the data which is used to control the movement in 

the DT. The robots in the DT move according to the data immediately after receiving it. For the robots and actuators, the 

joint angles are published, which is why they are controlled using the ArticulationBody package. The package lets one 

set the angles of rotatory joints and distances for linear joints. The movers’ data is their distance from their home position 

along the rail. Their position in the world coordinate system is calculated using a bézier curve along the path. The Delta 

robot’s data is the position of its end effector in the robot’s coordinate system. The position is converted into world 

coordinates using build in Unity functions. The Delta robot’s end effector and the movers are GameObjects and can be 

moved to the correct position using the goal position in the world coordinate system.  

The DT can be set to automatically connect to a set ROS topic on start or not. If the ROS connection is not 

automatically established, it can be started using the UI. The UI also has options to move the robots manually, display the 

robots’ status and change the camera angle. 

 

4. Experiments 

 

Two experiments were conducted, one to find the latency of the ROS connection and one to find the accuracy and 

repeatability of the robots. The way the two experiments were designed is presented in the following chapters. 

 

4.1. Ros Connection 

 

To measure the latency the published data was recorded in a rosbag file. The file contained 157509 messages and lasted 

1224 seconds. The file was played back and the times, at which the messages were received in Unity, were recorded. 

The recorded data was then compared to the time at which the data was published. This test was conducted for six 

scenarios:  

 

• Regular operation 

• Without simulating the robots’ movements 

• With the GPU power limited to 80% 

• With the GPU power limited to 20% 

• Adding an extra load of 30% on the CPU 

• Adding an extra load of 60% on the CPU 

 

The first two scenarios are designed to give a benchmark and to test the effect of computational load in Unity on the 

connection. The other two sets are designed to gauge the influence of the GPU and CPU respectively. Each scenario 

was recorded two times with no other programmes running on the PC. The scenarios were designed to test whether 

running the simulation in Unity or the hardware has an effect on the latency. W
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4.2. Accuracy and Repeatability  

 

The second experiment was testing the positioning and orientational accuracy and repeatability of the robots and 

movers. The standard ISO 9283:1998 was used as the base to design the methods of measuring and calculating the 

robots accuracy and repeatability [8]. The methods of the standard could not be followed completely as they are 

designed for physical systems. The standard defines five measurement points using an ISO Cube. The points are located 

on the diagonals of the measurement plane. For 6-axis robots the plane lies diagonally in the cube connecting one lower 

side with the opposite upper side. The cubes are placed in front of the robots within their workspace, see Figure 4. 

 

 
Figure 4 The ISO Cube in front of a Kuka robot 

 In one measurement cycle the robot moves to each point and stops while the measurement of the end effectors 

position and orientation is recorded. The BioIK package was used to move the robots by end effector position rather 

than joint angles. The resulting joint angles for each point were saved and used to move the robot during the 

measurement cycles. As mandated by the standard 30 measurement cycles as well as a 0 cycle, which is not recorded, 

were performed. The positional and orientational accuracy and repeatability for each point were calculated as defined in 

the standard.  

 

5. Results 

 

For the ROS connection the first tests, running with and without the robots, was designed to evaluate if higher 

workload on the Unity application has a significant impact on the connection speed. The results are presented below in 

Table 1. 

 

 With robots With robots Without robots Without robots 

Mean Error [ms] 16.07 16.65 27.82 19.94 

Max. Error [ms] 89.98 55.36 50.49 54.05 

Standard Deviation [ms] 11.08 9.49 10.44 10.02 
Table 1 The mean and maximum error and the Standard Deviation in milliseconds for the testcases with no hardware limitations. 

The average latency remained below 30ms for the tests without hardware constraints, for both scenarios: with and without 

robots. Although the maximum error was slightly higher in tests involving robots, the standard deviation remained below 

11ms in all cases. Considering the application's frame rate is approximately 60 frames per second, equivalent to 16.67ms 

per frame, the observed 3-7ms difference was considered insignificant. Furthermore, since the tests with robots showed 

slightly lower errors, it can be concluded that the simulation does not adversely affect latency. 

These two test sets were established as benchmarks for the scenarios involving hardware limitations. Subsequent 

tests were performed with the robot simulation. Specifically, the GPU was restricted to 80% and 60% power consumption, 

as indicated in Table 2.  

 

 80% GPU 80% GPU 60% GPU 60% GPU 

Mean Error [ms] 16.89 30.19 9.53 33.73 

Max. Error [ms] 53.87 53.99 81.41 57.24 

Standard Deviation [ms] 9.53 10.58 8.19 10.07 
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Table 2 The mean and maximum error and the Standard Deviation in milliseconds for the testcases with GPU limitations. 

The outcomes from both sets of tests involving the GPU remained relatively consistent with those conducted without any 

constraints. The maximum error and standard deviation in both sets were comparable to the benchmark tests. Given that 

the increase in the mean was only around 5ms compared to the tests without constraints, and the maximum error was 

either lower or similar to the benchmark, it can be inferred that GPU performance has very little impact on latency. 

Subsequently, the CPU was subjected to testing under additional loads of 30% and 60%, and the recorded results 

are presented in Table 3. 

 

 30% CPU 30% CPU 60% CPU 60% CPU 

Mean Error [ms] 27.19 12.51 22245.49 20526.7 

Max. Error [ms] 53.30 186.38 39624.55 36995.82 

Standard Deviation [ms] 10.49 10.40 11054.03 10453.98 
Table 3 The mean and maximum error and the Standard Deviation in milliseconds for the testcases CPU limitations. 

In the first set of tests with additional 30% CPU load, the results remained consistent with previous tests for the 

mean and maximum error. Although plotting the difference for each messages shows a shift towards higher differences. 

However, when the CPU load was increased to 60%, a significant difference was observed. Latency reached a maximum 

of 396.24 seconds, and the standard deviation for both runs exceeded 10,000ms, in contrast to the consistent 10ms 

observed in all other runs.  

Figure 5 illustrates how the difference increased with each message, with errors accumulating over the test duration. 

This test clearly demonstrates the substantial impact of CPU load on latency. The slight difference observed in the plotted 

error with smaller additional loads implies that even minor increases in CPU load or limited CPU power can have a 

noticeable effect. 

 

 
Figure 5 Test case with an additional load of 60% on the CPU. The difference, in seconds, is plotted over the duration of the 

recording, measured in number of messages. The average is shown by a red dotted line. 

The results of the accuracy and repeatability measurements shows that the Kuka and UR5 robots performed worse 

than their physical counterparts, in all categories except for orientational repeatability. The average positional accuracy 

(APp) of the Kuka robots lied between 14.4mm and 114.2mm. The average orientational accuracy (APa, APb and APc) 

were -0.28328°, -0.28885° and -0.01599° respectively. In comparison to the pose accuracy of between 0.5mm and 

0.7mm, which was measured on a physical KUKA model AGILUS KR 6 R900 sixx without prior calibration [9]. The 

positional repeatability (RPl) of the robots ranged from 0.5mm to 5.6mm, which is up to 3 orders of magnitude greater 

than ± 0.03 mm, which is the pose repeatability given by the manufacturer [10]. The findings suggest that the accuracy 

is influenced by the end effector. This is evident from the minor 0.4mm difference in accuracy between the two robots 

with identical end effectors, with greater differences between robots with different end effectors. This indicates that the 

accuracy is not solely determined by the number of links or types of joints, but also by the geometry of the links. The W
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UR5 robots had a similar result with an average APp across all points for both robots of 82.5mm. The repeatability was 

however a lot better than of the Kuka robots with an average of 0.021mm. The manufacturer of the UR5 robots 

specifies a repeatability of ± 0.1 mm [11]. However, the orientational repeatability for all robots was high, the results 

are in the range of 3.8e-14° to 1.9e-12°.  

The high APp of the robots can be explained by the method of evaluation. The commanded TCP position was 

defined by the ISO Cube within the world coordinate system. The robot's movement given by the TCP position was 

executed using the BioIK package to record the joint positions. During this process, when converting angles from the 

BioIK script to ArticulationBodies, rounding errors might impact the resulting TCP position. These errors only affect 

the measurement process but do not impact the DT during regular operation. Because during regular operation the 

angles are provided by the physical twin's data. However, such errors cannot account for the low positional repeatability 

observed in the Kuka robots. The ArticulationBody script moves the robots by applying forces to the joints, which 

should let the joint reach the set position. Various factors, such as collisions, inertia, and controller settings, can 

influence the accuracy of these movements. To achieve the most precise results, values need to be adjusted to each 

situation, as they cannot all be set to manufacturer specifications due to the absence of a standardized unit. 

The Movers and the Delta robot are not controlled using this method. The Delta robot's end effector is positioned, 

using the Transform script, according to the data provided by ROS, while the robot's links move using an inverse 

kinematic script. Since the end effector is accurately set to its desired location, there is no disparity between the 

commanded and executed poses. The measurement accurately reflects this precision. 

APp and RPl for these robots are 0.0mm. Because the end effector doesn't rotate, there is no orientational accuracy or 

repeatability to consider. This is in contrast to the physical robot, which boasts an accuracy of 0.5mm and a 

repeatability of ± 0.1mm [12].  

 

6. Conclusion 

 

The connection via ROS with the mentioned packages provides a fast connection for small message sizes. The 

Connection is reliable as all messages were received by the Unity subscriber. The computational load of the Unity 

application and the GPU have no significant effect on the connection speed. The latency is however highly affected by 

the CPUs performance. Even with smaller additional loads of 30% plotting the error for each point showed a shift towards 

higher errors. At 60% additional load the error becomes greater for each message.  

The positional accuracy and repeatability for the robots controlled using the ArticulationBody script is lower than, 

what the manufacturer of the robots claim, their physical counterparts can achieve, by orders of magnitude.  

Although there are many settings and variables which can be changed in the ArticulationBody script. A more in-

depth study of the effects of these variables on the accuracy is necessary. 
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