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Abstract 

 

Determining material parameters is crucial for understanding their physical properties, improving the design process, and 

optimizing costs. Due to the challenges of measuring parameters in fibre-reinforced concrete, numerical models and 

inverse analysis are employed for parameter identification. Laboratory tests, including bending and compressive strength 

tests, were conducted on concrete samples, recording three parameters: vertical displacement, crack mouth opening 

displacement, and applied force. The laboratory test results served as a reference for developing a numerical model of 

micro-reinforced concrete, which generated simulated data used as input for an inverse model based on the Levenberg-

Marquardt method. Model verification involved comparing the results with the data obtained from the laboratory tests.  
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1. Introduction  

 

The identification and quantification of parameters for engineering materials play a significant role in improving the 

understanding of their physical properties, enhancing design methods, and optimizing costs. The process of identifying 

parameters often requires numerous laboratory tests that can be time-consuming, financially draining, and often 

inadequate. In the case of fibre-reinforced concrete, characterized by the replacement of traditional steel reinforcement 

with short fibres, the parameters describing the concrete mixture, steel fibres, and their mutual interaction are often 

physically immeasurable values. 

One of the methods for indirectly determining unknown parameters is the use of computer models that can replace 

costly experimental tests. However, the heterogeneity of concrete presents a significant limitation when describing this 

material using numerical methods [1], which is further complicated by the addition of fibres to the mixture. In previous 

research, two approaches have been used to address this problem: the application of an appropriate finite element model 

where fibres are discretized and placed along the edges of finite elements [2], and the use of the Fiber Bundle Model 

(FBM) for composite materials [3]. 
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This paper presents a new deterministic numerical model that, through inverse analysis based on the Levenberg-

Marquardt algorithm, identifies the material parameters of fibre-reinforced concrete that affect the overall response of the 

finished concrete element. 

 

2. Laboratory testing 

 

To gain insight into the behaviour of beams made of fibre-reinforced concrete, laboratory tests were conducted. Two 

tests were performed: three-point bending of beams and testing of the compressive strength of cubes. All test specimens 

were made using self-compacting concrete. The compressive strength test was carried out on standard concrete samples 

with dimensions of 150x150x150 mm by applying a load until the cube failure, following the standard for determining 

the compressive strength of cured concrete test specimens [4]. The measurement results are presented in Fig. 1. and their 

mean value was taken as the reference value for the compressive strength of concrete. 

 

 
 

Fig. 1. Concrete’s force-displacement diagram 

 

Samples for three-point bending tests were categorized into three groups: beams without fibres, beams with regular 

fibres, and beams with rough-surfaced fibres. When preparing fibre-reinforced concrete, fibres are usually added during 

the mixing of wet ingredients, resulting in their homogeneous but unpredictable distribution within the finished mixture. 

To eliminate the uncertainty of fibre positions within test specimens, fibres were placed at predefined positions using 

auxiliary elements before pouring the concrete mixture. After 28 days, the auxiliary elements were removed, leaving a 

"notch" on the beam that predefined the crack position and facilitated the observation of fibre behaviour during bending. 

All three-point bending tests were conducted with displacement control until the beam failure, following the standard for 

determining the flexural strength of cured concrete test specimens [5]. Measured quantities included vertical 

displacement, crack mouth opening displacement (horizontal displacement), and applied force. The test results, which 

were later used for the validation of the numerical model, are shown in Fig. 2. to 4. 

 

 
 

Fig. 2. Crack-mouth opening displacement diagram for beams without fibres 
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Fig. 3. Crack-mouth opening displacement diagram for beams with regular fibres 

 

 
 

Fig. 4. Crack-mouth opening displacement diagram for beams with rough-surfaced fibres 

 

3. Crack-mouth opening displacement 

 

Crack Mouth Opening Displacement (CMOD) is the horizontal deformation of the beam that occurs during bending, 

measured at the bottom of the crack, as shown in Fig. 5. 

 

 
 

Fig. 5. Three-point bending test configuration with a crack mouth opening displacement gauge installed 

 

Among all the results obtained from laboratory testing, CMOD is the only parameter that directly relates to the cross-

sectional and longitudinal aspects of the beam. By analyzing this parameter, it is possible to gain insight into the influence 

of material parameters, such as those describing fibres in the concrete, on the global response of the beam under loading. 

 

4. Mathematical model of fibre-reinforced concrete 

 

W
or

kin
g P

ap
er

 of
 34

th 
DAA

AM
 S

ym
po

siu
m



34TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION 

 

 
 

The mathematical model of fibre-reinforced in this research is a forward model based on principles laid out by Menke 

(2018) [6] and it aims to reproduce certain beam behaviour parameters that relate to material parameters and experimental 

results and is suitable for the formulation of an inverse model [7]. 

As the heterogeneity of the fibre-reinforced concrete represents a great challenge for numerical modelling, the material is 

simplified by describing the concrete and the fibres individually, assuming homogeneity of each. Concrete is divided into 

layers, following the approach introduced by Kožar et al. in their work from 2021 [8], and is mathematically described 

using the force-displacement diagram: 

 

𝑓𝑏(𝑥, 𝑎𝑡 , 𝑏𝑡 , 𝑎𝑐 , 𝑏𝑐) = {
𝑎𝑐𝑥𝐸𝑏𝑒𝑥𝑝(−𝑏𝑐𝑥)     𝑖𝑓𝑥 < 0

𝑎𝑡𝑥𝐸𝑏𝑒𝑥𝑝(−𝑏𝑡𝑥)     𝑖𝑓𝑥 ≥ 0
  (1) 

 

Where at and bt are the parameters describing the behaviour of concrete in tension, ac, and bc are the parameters describing 

the behaviour of concrete in compression, and Eb is the modulus of elasticity of concrete. The equation relating 

displacement and force for steel fibres is as follows: 

 

𝑓𝑎(𝑥, 𝐹𝑡 , 𝐸𝑢 , 𝐸𝑑) =

{
 

 
𝑥𝐸𝑏𝑒𝑥𝑝(−𝑏𝑐𝑥)     𝑖𝑓𝑥 < 0
𝑥𝐸𝑢     𝑖𝑓𝑥 > 0 ∧ 𝑥 < 𝑥𝑒𝑙𝑎𝑠𝑡

(𝑥 − 𝑥𝑒𝑙𝑎𝑠𝑡)𝐸𝑑      𝑖𝑓𝑥 ≥ 𝑥𝑒𝑙𝑎𝑠𝑡 ∧ 𝑥 < 𝑥𝑙𝑖𝑚𝑖𝑡
0      𝑖𝑓𝑥 > 𝑥𝑙𝑖𝑚𝑖𝑡

  (2) 

 

The parameters describing the behaviour of fibres are the ultimate force Ft and the modulus of elasticity of steel fibres 

under loading Eu and unloading Ed. Equations (1) and (2) are independent of each other but are related within the 

equilibrium equations: 

 

𝐹(𝜖, 𝜅) = 𝛥ℎ∑𝑖=1
𝑠𝑙𝑜𝑗

𝑓𝑏[(ℎ𝑖 − 𝜖ℎ)𝑡𝑔(𝜅)] + ∆𝑎 𝑓𝑎(ℎ𝑎 − 𝜀 ℎ) = 0

𝑀(𝜖, 𝜅) = 𝛥ℎ∑𝑖=1
𝑠𝑙𝑜𝑗(ℎ𝑖 − 𝜖ℎ)𝑓𝑏[(ℎ𝑖 − 𝜖ℎ)𝑡𝑔(𝜅)] + ∆𝑎 (ℎ𝑎 − 𝜀 ℎ) 𝑓𝑎(ℎ𝑎 − 𝜀 ℎ) = 0

  (3) 

 

Where the upper equation represents the force balance, and the lower equation represents the moment balance. From the 

equilibrium equations, the position of the neutral axis of the beam ε and the crack mouth opening displacement angle κ 

can be determined. These two values are then used in the expression for the crack mouth opening displacement: 

 

𝑑𝑐𝑚𝑜𝑑 = (1 − ε) ∙ h ∙ 𝑡𝑔(𝜅)  (4) 

 

Where h represents the height of an individual layer of the beam, the results obtained through numerical modelling of 

expression (4) are presented in Fig. 6. 

 

 
 

Fig. 6. CMOD Results for Eb = 40 GPa and Ft values ranging from 0.5 kN to 3.0 kN 

 

Obtained results from the forward model were successfully validated using the laboratory testing data, as well as the 

crack-mouth opening displacement results generated using the data-driven stochastic model formulated by Kožar et al. 

in their work from 2021 [9]. 

 

5. Inverse model 
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Levenberg-Marquardt Method is an iterative technique for solving nonlinear least squares problems to estimate 

parameters. This method iteratively adjusts a function's parameter until it finds a value that minimizes the error between 

predicted and actual data. 

 
The general notation for the sum of squares in the equation describing the model function fitting, ŷ(x, p), to the 

independent variable t and a vector of n parameters p, given a set of m data points (ti, yi), is: 

 

𝑆𝑆 = ∑ (𝑦𝑖 − ŷ𝑖)
2n

𝑖=1   (5) 

 

Where yi is the known (measured) data, and ŷi is the target function. If ŷ(x, p) is nonlinear in the model parameters p, the 

minimization process becomes iterative. 

 
𝜕𝑆𝑆

𝜕𝑝
= 0  (6) 

 
Substituting expression (5) into (6) yields: 

 
𝜕𝑆𝑆

𝜕𝑝
= −2∑ (𝑦𝑖 − ŷ𝑖)

𝜕ŷ𝑖

𝜕𝑝

n
𝑖=1   (7) 

 

Where  
𝜕ŷ𝑖

𝜕𝑝
 is the Jacobian matrix of dimensions mxn, representing the local sensitivity of the function to variations in 

parameter p. This is also known as the sensitivity coefficient at each measurement point χp and can be expressed as: 

 
∑ (𝑦𝑖 − ŷ𝑖)χ𝑝
n
𝑖=1 = 0  (8) 

 
The perturbed value of the parameter with each iteration is denoted as ∆p. The target function with p + ∆p is then written 

as: 

 

ŷ𝑖(𝑝 + 𝛥𝑝) = ŷ𝑖(𝑝) +
𝜕ŷ𝑖

𝜕𝑝
𝛥𝑝  (9) 

 

When (9) is substituted back into (8), the perturbation value of parameter p is obtained as: 

 

∑ (𝑦𝑖 − ŷ𝑖(𝑝) −
𝜕ŷ𝑖

𝜕𝑝
𝛥𝑝) χ𝑝

n
𝑖=1 = 0  (10) 

 

From expression (10), the value of the perturbation of the parameter p is obtained as: 

 

𝛥𝑝 =
∑ (𝑦𝑖−ŷ𝑖(𝑝))χ𝑝
n
𝑖=1

∑ χ𝑝
2n

𝑖=1

  (11) 

 

6. Determination of the material parameters Eb and Ft 

 
The previously described method is applied to determine the values of the modulus of elasticity of concrete Eb and the 

threshold force of the steel fibre Ft. Expression (11) is rewritten as: 

 

𝛥𝐸𝑏 =
∑ (𝑦𝑖−𝑑𝑐𝑚𝑜𝑑(𝐸𝑏,𝐹𝑡))χ𝐸𝑏
n
𝑖=1

∑ (χ𝐸𝑈)
2n

𝑖=1

  (12) 

 

for the minimization with respect to Eb, and 

 

𝛥𝐹𝑡 =
∑ (𝑦𝑖−𝑑𝑐𝑚𝑜𝑑(𝐸𝑏,𝐹𝑡))χ𝐹𝑡
n
𝑖=1

∑ (χ𝐹𝑡)
2n

𝑖=1

  (13) 

 
for the minimization with respect to Ft. The calculation begins with initial values Eb,0 and Ft,0. Expression (4) is used as 

the target function, and sensitivity coefficients obtained from expression (8) are: 

 

χ𝐸𝑏,1 =
𝑦1−𝑑𝑐𝑚𝑜𝑑(𝐸𝑏,0,𝐹𝑡,0)

𝛥𝐸𝑏
  (14) 

 
for the parameter Eb and 
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χ𝐹𝑡,1 =
𝑦1−𝑑𝑐𝑚𝑜𝑑(𝐸𝑏,0,𝐹𝑡,0)

𝛥𝐹𝑡
  (15) 

 
for the parameter Ft. Consequently, the expressions for the perturbation of both parameters are as follows: 

 

𝛥𝐸𝑏 =
∑ (𝑦𝑖−𝑑𝑐𝑚𝑜𝑑(𝐸𝑏,0,𝐹𝑡,0))χ𝐸𝑏,1
n
𝑖=1

∑ χ𝐸𝑏,1
2n

𝑖=1

  (16) 

 
for parameter Eb, and 

 

𝛥𝐹𝑡 =
∑ (𝑦𝑖−𝑑𝑐𝑚𝑜𝑑(𝐸𝑏,0,𝐹𝑡,0))χ𝐹𝑡,1
n
𝑖=1

∑ χ𝐹𝑡,1
2n

𝑖=1

  (17) 

 
for parameter Ft. Adding the initial assumption to expressions (16) and (17) for the respective parameters yields the final 

iteration values: 

 

𝐹𝑡,1 = 𝐹𝑡,0 + 𝛥𝐹𝑡  (18) 

 

𝐸𝑏,1 = 𝐸𝑏,0 + 𝛥𝐸𝑏  (19) 

 
The process is then repeated with a new iteration and continues until local minimum values are found where both 

parameters converge. 

This procedure was applied to the data from Fig. 1., with Eb = 45.0 GPa and Ft = 1.8 kN. Through the inverse analysis, 

satisfactory results were obtained, with the resulting values of these parameters being Eb = 43.12 GPa and Ft = 1.71 kN, 

converging within 20 iterations. The resulting values are deemed satisfactory and they validate the inverse procedure.  

The Levenberg-Marquardt algorithm's success in finding optimal parameter estimates is sensitive to the choice of 

initial parameter values which influences the model's convergence. Future work will focus on enhancing the robustness 

of the initial parameter estimation process to mitigate this sensitivity and improve accuracy, as well as conducting a 

sensitivity analysis of the obtained parameters. Such analysis aims to determine the individual components and 

coefficients' influence on the optimization problem's solution and identify those with the most significant impact on the 

behaviour of the concrete element [10]. 

 

7. Conclusion 

 

In this study, challenges of identifying material parameters in fibre-reinforced concrete were addressed, a task 

hampered by the limitations of traditional laboratory testing. A deterministic numerical model which employs the 

Levenberg-Marquardt algorithm for inverse analysis was introduced. This novel approach efficiently and accurately 

estimated material parameters, which was specifically presented on the modulus of elasticity of the concrete (Eb) and the 

threshold force of steel fibres (Ft). The results mathematically matched the values obtained through laboratory 

experiments, confirming the viability of the method. 

Through this research, the problem of efficient parameter determination using a deterministic model was solved. This 
effectively eliminates the need for extensive, resource-intensive laboratory tests, reducing both time and cost and paves 

the way for further optimization and practical applications of fibre-reinforced concrete. Future work will focus on refining 

the inverse model and conducting a comprehensive sensitivity analysis of material parameters, with the goal of enhancing 

the performance and reliability of these materials in engineering applications. 
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