
33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

DOI: 10.2507/34th.daaam.proceedings.xxx

IMPLEMENTATION OF TRAJECTORY PLANNING FOR

THE MINIATURISED INDUSTRIAL ROBOTS OF THE

MOROBOT PLATFORM

Claudia Holzgethan, Ali Aburaia, Kemajl Stuja, Mohamed Aburaia

This Publication has to be referred as: Holzgethan, C[laudia]; Aburaia, A[li]; Stuja, K[emajl] & Aburaia, M[ohamed]

(2023). IMPLEMENTATION OF TRAJECTORY PLANNING FOR THE MINIATURISED INDUSTRIAL ROBOTS

OF THE MOROBOT PLATFORM, Proceedings of the 34th DAAAM International Symposium, pp.xxxx-xxxx, B.

Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-xx-x, ISSN 1726-9679, Vienna, Austria

DOI: 10.2507/34th.daaam.proceedings.xxx

Abstract

The International Federation of Robotics (IFR) has reported a 200% increase of installed industrial robots over the last

decade, with further growth projected. To prevent a gap between supply and demand for a qualified workforce, Robotics

in Education supports students with understanding robotics and sparking interest in technology. For a rapidly growing

industry with new technologies and solutions emerging almost daily, the skills of and practice in critical comparison of

methods and creative problem-solving are essential. The morobot platform of the University of Applied Sciences

Technikum-Wien manufactures 3D-printed miniaturized industrial robots that enable cost-effective and easy access to

knowledge in the robotics domain. However, the current implementation of the robot control leads to jerky movement

and provides no possibility of creating a geometric path. In this paper, the platform is enhanced with trajectory planning

to achieve smooth robot motions and implement continuous point-to-point and linear movements. Suitable velocity

profiles are computed to achieve a desired motion. Given the high minimum velocity of the morobot motors, third- and

fifth-order polynomials are compared regarding the smoothness of the resulting motion and the absolute positioning

accuracy. Both methods achieved the desired smoothness. However, third-order polynomials provide a higher positioning

accuracy, and have therefore been implemented for continuous point-to-point movement. For the linear movement,

intermediate points are calculated to approximate a straight line between the start and goal robot position. Due to the high

minimum velocity of the motors and the close proximity of the intermediate points, trajectory planning cannot resolve

the jerky motion. Motors with lower minimum velocity should be identified for a future project phase.

Keywords: trajectory planning; third-order polynomials; fifth-order polynomials; geometric path; industrial robotics

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

1. Introduction

Be it industrial manufacturing or assistive technologies [1] robots are expected to play an increasingly important role

in society, leading to a radical transformation in skill requirements. Robotics in Education focuses on strengthening the

learning skills of the future workforce and motivating students for topics in Science, Technology, Engineering and

Mathematics (STEM) [2], [3].

At the University of Applied Sciences Technikum Wien, the morobot platform was created. It focuses on

manufacturing 3D-printed miniaturised industrial robots that enable inexpensive and easy access to knowledge in the

robotic domain. The platform helps students to learn and understand aspects of industrial robotics, including the

composition of different kinematic chains and their strengths and weaknesses, the computation of forward and inverse

kinematics and the control of robots via inverse kinematics. However, the implementation of the platform comes with

limitations regarding the control of the robot’s geometric path and the smoothness of the motion. The current motor

control leads to abrupt and jerky movements that induce mechanical stress on the robots’ kinematic chains. Furthermore,

it is only possible to define goal positions for the robot’s tool centre point (TCP) that are approached in a discontinuous

point-to-point movement. No continuous geometric path of the TCP can be composed.

To enhance the platform, this paper focuses on employing and comparing third- and fifth-order polynomials as

trajectory planning methods for the miniaturised industrial robots. The goal is to minimise jerk and consequently create

smooth and continuous movements, whilst maintaining a high positioning accuracy. Furthermore, continuous point-to-

point and linear movements are implemented to enable the construction of geometric paths.

The paper is organised as followed: Section 2 gives an introduction to trajectory planning and explores different

methods of creating and optimising trajectories. In section 3 the utilized hardware is presented, the limitations of the

current implementation are discussed and the goals for this project are defined. Section 4 focuses on the motor limitations

and the theoretical as well as practical realisation of trajectory planning and geometric paths for the miniaturised robots

of the morobot platform. The paper closes with the discussion of the results in section 5 and the conclusion and suggestions

for future projects in section 6.

2. State of the Art

In industrial robotics, a distinction is made between path planning and trajectory planning. Path planning mainly

focuses on computing a geometric path along which the TCP should move [4]. Trajectory planning on the other hand

deals with computing motion profiles, i.e. time sequences of positions, velocities, accelerations and higher derivatives of

either the TCP or the robot’s joint values [5]. The aim is to create desired motions, like smooth movements, by employing

suitable displacement functions.

There are various approaches to generate trajectories for industrial robots. Bai et al. [6] use a five-segment

interpolation function based on s-curves to create smooth displacement and velocity profiles for an ABB IRB 1200

industrial robot. S-curves are also employed in [7] and [8]. In the former, the s-curve trajectory is compared to a cubic

spline trajectory with respect to execution time and jerk. The results show that the s-curve produces a faster and smoother

trajectory than the cubic spline [7]. In [8], the authors use a sigmoid function to generate a desired jerk profile that enables

an infinite order of continuity of the motion. This has the effect of minimising vibrations and increasing positioning

accuracy. Zheng et al. [9] on the other hand utilise fifth-order polynomials and interpolation to compute a desired

trajectory for a 6 degrees of freedom robot manipulator. Parikh and Dave [10] compare high order polynomials to

parabolic and cubic functions. The results show that polynomials of order seven and nine generate smoother trajectories

than the lower order polynomials but also lead to higher peaks of velocity and acceleration values. In [11] and [12] cubic

splines and fifth-order B-splines are used to generate desired motion profiles.

Many papers also focus on optimising computed trajectories. Common optimisation criteria according to literature are

minimum execution time [13], minimum energy consumption [14], and minimum jerk [7]. Often multiple of these criteria

are combined to generate the optimal trajectory [12], [15].

2.1. Minimum execution time

Increasing productivity is a major aspect when it comes to working economically. One way of achieving this is by

minimising the execution time of the robot’s task [16], [15]. Li and Wang [13] use a cubic polynomial curve to connect

the robot’s path points and generate a smooth trajectory. Then a genetic algorithm is applied to optimise the execution

time of the robot’s joints. The results show that the robot reaches the desired poses and follows the desired trajectory in

the shortest time.

2.2. Minimum energy consumption

The criterion of minimum energy consumption does not only focus on saving energy, which is beneficial as it reduces

costs, but also on minimising the mechanical stress on the robot’s actuators [16], [17]. Chen et al. [14] minimised the

energy consumption for a bottle grasping task by applying a gaussian quadrature optimisation method.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

2.3. Minimum Jerk

Jerk is defined as the time derivative of the acceleration, i.e. the third time derivative of the position. It indicates how

quickly the acceleration of an object changes with respect to time. In general, jerk is undesirable in industrial robotics as

it leads to an unnatural motion and increases the wear of the actuators and the robot’s structure. The minimisation of jerk

does not only lead to a smoother execution of the robot’s trajectory and reduction of vibration and wear but also reduces

trajectory tracking errors [15]–[17].

Devi et al. [7] developed an algorithm to generate a smooth trajectory with minimum jerk. First the inverse kinematics

of a 6-DOF PUMA-560 robot is solved with the help of an artificial neural network. The generated joint values are than

fed into an s-curve equation to produce a smooth trajectory with minimum jerk and time.

2.4. Multi-criteria

Often multiple criteria are decisive to obtain an optimal trajectory. Therefore, many papers focus on multi-criteria

optimisation. In [12], the contradictory criteria minimum time, minimum acceleration and minimum jerk are combined

to produce an optimal trajectory for a glass-handing robot. The authors use a minimised objective function to find an

optimal balance between the three criteria and fifth-order B-splines to produce an optimal trajectory. Rout et al. [11] face

a similar challenge. Here, the contradictory criteria time, jerk and torque are combined to generate a smooth trajectory

with minimum execution time. The best trade-off between the criteria is found by combining the Non-Dominated Sorting

Genetic Algorithm and the Nelder-Mead simplex method. The output of the combined algorithms was used to compute

the joint angles for the desired cubic spline trajectory path.

Chiddarwar and Babu [15] developed a method to achieve an optimal trajectory in terms of minimising the execution

time, energy, jerk and acceleration, whilst accomplishing maximum manipulability, i.e. maintaining all of the robots

degrees of freedom at any time. Here a trigonometric spline was used to represent the desired trajectory. The authors then

used sequential quadratic programming and genetic algorithm to optimise the trajectory according to the optimisation

criteria.

3. Problem Description

In this paper, trajectory planning is applied on the miniature robots of the morobot platform of the UAS Technikum-

Wien. For a better understanding of the current limitations of the platform, this section starts with an overview of the

available robots and the motors that are used. Based on the knowledge of the employed hardware, the limitations of the

current robot control and the goals for this project are discussed.

3.1. Hardware

The morobot platform consists of several miniaturised industrial robots with different kinematic chains, including

both parallel and serial structures. Fig. 1 shows an overview of the available miniaturised industrial robots.

Fig. 1 : Overview of the miniaturised industrial robots of the morobot platform (top row: palletising robot, two-

dimensional delta robot, three-dimensional delta robot | bottom row: RRR and RRP SCARA)

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

The top row in the image shows, from left to right, the parallel structures of a palletising robot, a two-dimensional and

a three-dimensional delta robot. The bottom row shows two versions of a SCARA robot, one with three rotational axes

(RRR) and one with two rotational and one translational axis (RRP). Each of the robots takes up an approximate size of

a DIN A5 sheet of paper. For this project, the robots are controlled with an Arduino Mega 2560.

The motors that are used in the joints of the miniaturised robots are Smart Servos by Makeblock [18]. They dispose

of an open-source programming library, which allows to both control the motors and receive information, like the current

position, velocity or internal temperature. There are two main groups of commands with which the motors can be

controlled:

A) Commands where the motor automatically moves to or by a defined angle and

B) Commands where a fixed motor velocity is set

In case of group A), the Makeblock Smart Servos use an internal velocity regulation to ensure that the target position

is reached. On reaching the target position, the motor gets stopped. A continuous motion through via-points is not possible

with these commands.

In case of group B), a fixed velocity in form of a PWM (pulse width modulation) value gets sent to the motor. The

motor then moves with this velocity until it is set to zero again.

3.2. Limitations of the implementation

The problems at this paper’s start state are two-fold. First off, the robots can only be controlled by defining target

poses for their tool centre point. Inverse kinematics is used to calculate the corresponding joint values and motor angles

for the target pose. However, the geometric path, i.e. the path that the TCP follows to reach the target pose, cannot be

defined by the user.

Secondly, the calculated goal angles are sent directly to the motors via commands of group A). As described in Section

3.1 above, with these commands, the motors always stop once a target position is reached. Therefore, only a discontinuous

point-to-point movement is possible and no continuous geometric path of the robot’s end-effector can be composed.

Furthermore, the motor’s internal velocity regulation leads to abrupt and jerky movements that induce mechanical stress

on the robot’s kinematic chain. This jerky movement is exemplified in Fig. 2. The image shows the motion of the TCP of

the RRR SCARA when moving from a start position to a goal position. The jerk in the motion can be observed by the

jumps in the red line and is magnified in the two positions a) and b).

Fig. 2: Exemplary jerky movement of the TCP of the RRR SCARA with the current implementation

of the robot control. The red line shows the motion of the TCP. The jerk is indicated by

arrows and magnified at the two positions a) and b).

The problems of the current implementation can be summarised as follows:

1. The motor control leads to jerky and discontinuous movements

2. No geometric path can be defined by the user

The aim of this paper is to apply and compare two trajectory planning methods on the RRR SCARA of the morobot

platform, with the goal of creating smooth and continuous motions with high position accuracy. Furthermore, the

trajectory planning methods shall be used to implement a continuous point-to-point and linear movement of the robot’s

TCP.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

4. Methods

The trajectory planning methods that are compared in this paper are third- and fifth-order polynomials. For a better

understanding of the reasons that these methods were chosen, it is first necessary to examine the limitations of the

employed motors.

4.1. Motor limitation – minimum velocity

As described in section 3.1, in addition to the commands for setting a target pose, the utilised motors also compose of

commands with which a velocity can be set via a PWM value. This is important, as it allows to compute time sequences

of velocities via trajectory planning and sending these velocities to the motors.

Experiments, that were conducted on the three Smart Servos of the RRR SCARA showed that the minimum PWM

value at which the motors rotate reliably is 8. To determine the actual velocity at the minimum PWM value, each of the

motors was rotated by 50 degrees and the travel time was measured. The experiment was conducted 20 times per motor

and the average travel time was calculated. The results are shown in Table 1.

 Motor 1 Motor 2 Motor 3

Average time

[milliseconds]
1 923 1 826 1 812

Standard

deviation

[milliseconds]

8.82 10.15 16.10

Velocity

[°/sec]
26.00 27.37 27.59

Table 1: Average time that is needed to rotate a motor by 50 degrees with the

minimum PWM value of 8, taken from 20 measurements each

The minimum average time could be observed at motor 3 with a value of 1 812 [msec] and a standard deviation of

16.10 [msec]. After dividing the travelled distance of 50 degrees by this average travel time, a minimum velocity of

27.59 [°/sec] or 4.6 [rpm] can be obtained.

To put the minimum velocity in perspective, an example can be considered. Fig. 3 shows the SCARA robot in the two

maximum displacement positions of the first joint.

Fig. 3: Poses of the SCARA robot, when the first joint is moved to its minimum (start) and maximum (goal) angle

In total the first joint can be moved by 200 [°]. Dividing this value through the minimum velocity of the motors leads

to a maximum travel time of 7.25 [sec]. This means that the first joint of the robot is not allowed to take more than 7.25

seconds to traverse its entire working area. Otherwise, the corresponding PWM value, that is sent to the motor, would be

lower than the minimum value of 8 and the robot would not move reliably.

In addition to the maximum distance of a joint, the minimum distance can also be considered. In case of the Makeblock

Smart Servos the minimum distance that can be travelled at a time equals 1 [°]. Divided by the minimum velocity, a

maximum travel time of 0.036 [sec] or 36 [msec] can be obtained.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

4.2. Trajectory planning

As mentioned before, trajectory planning focuses on computing desired motion profiles. It can have different goals

like minimising the jerk, the energy consumption or the execution time. In this paper, the goal is to create smooth and

continuous movements for the miniaturised robots of the morobot platform and therefore reducing their jerk. In robotics

and automation in general, a multitude of different trajectory planning methods exits to achieve such a motion [19].

Ranging from polynomial and trigonometric to spline functions, there are different levels of complexity that can lead to

varying results of the computed trajectory. In case of the miniaturised robots, two main aspects must be considered when

choosing suitable trajectory planning methods. First off, to achieve smooth motions, the first- and second-order derivative

of the trajectory function must be continuous [5]. Secondly, due to the high minimum velocity of the motors and the need

to calculate the trajectory function at runtime, the computational effort of the employed methods must be as low as

possible.

Under these aspects third- and fifth-order polynomials were chosen to be applied and compared. Although third-order

polynomials are not continuous in their second derivative and can therefore not guarantee a jerk-free motion, they prove

to be promising since their computational effort is low compared to other methods. Fifth-order polynomials do dispose

of continuous first and second order derivatives, however, more equations must be computed at runtime.

Trajectory planning can either be conducted for a robot’s TCP in the robot coordinate space or for the individual robot

joints in the joint space [5]. In this paper, the trajectories in the joint space are examined. In the following sections, the

joint trajectory functions will be denoted as 𝑞(𝑡), 𝑣(𝑡) and 𝑎(𝑡) for the position, velocity and acceleration. It shall be

noted that these expressions describe the trajectory of one individual joint. In practice, these functions must be computed

for all 𝑗 robot joints.

4.2.1 Third-order polynomials

Polynomials of degree three, also commonly known as cubic functions, and their first derivative can be expressed by

the following equations (1) and (2) [5]:

𝑞(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + 𝑐3𝑡3 (1)

𝑣(𝑡) = 𝑐1 + 2𝑐2𝑡 + 3𝑐3𝑡2 (2)

,where 𝑞(𝑡) and 𝑣(𝑡) are the joint value and joint velocity depending on time, 𝑡 is the time that has elapsed since the

start (𝑡 = 𝑡 − 𝑡0, with 𝑡0 = 0) and 𝑐0 to 𝑐3 are unknown coefficients. Since there are four unknown coefficients, four

constraints must be defined. These can for example be the start and final joint value and the velocity at the start and end

of the motion:

At 𝑡0 = 0: At 𝑡𝑓 = 𝑡1:

𝑞(0) = 𝑞0 𝑞(𝑡1) = 𝑞1

𝑣(0) = 𝑣0 𝑣(𝑡1) = 𝑣1

By applying the conditions in the equations (1) and (2), the coefficients can be calculated as follows (3)-(6):

𝑐0 = 𝜃0 (3)

𝑐1 = 𝑣0 (4)

𝑐2 =
3(𝑞1 − 𝑞0) − (2𝑣0 + 𝑣1)𝑡1

𝑡1
2 (5)

𝑐3 =
−2(𝑞1 − 𝑞0) + (𝑣0 + 𝑣1)𝑡1

𝑡1
3 (6)

The robot’s joints will be controlled by setting desired velocities depending on time. Therefore, the equations (4), (5),

(6) and (2) must be solved during runtime to determine the corresponding velocity profiles of the motors.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

4.2.2 Fifth-order polynomials

Similar to third-order polynomials, fifth-order polynomials can be described by the following equations (7)-(9) [5]:

𝑞(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + 𝑐3𝑡3 + 𝑐4𝑡4 + 𝑐5𝑡5 (7)

𝑣(𝑡) = 𝑐1 + 2𝑐2𝑡 + 3𝑐3𝑡2 + 4𝑐4𝑡3 + 5𝑐5𝑡4 (8)

𝑎(𝑡) = 2𝑐2 + 6𝑐3𝑡 + 12𝑐4𝑡2 + 20𝑐5𝑡3 (9)

Here, 𝑞(𝑡), 𝑣(𝑡) and 𝑎(𝑡) describe the position, velocity and acceleration of the joint as functions of time. The variable

𝑡, again, stands for the time that has elapsed since the start of the motion with 𝑡 = 𝑡 − 𝑡0 and 𝑡0 = 0 and 𝑐0 to 𝑐5 are

unknown coefficients.

In contrary to third-order polynomials, six constraints must be defined to solve the unknown coefficients. In addition

to the initial and final position and velocity of the joint, also the start and final accelerations can be specified:

At 𝑡0 = 0: At 𝑡𝑓 = 𝑡1:

𝑞(0) = 𝑞0 𝑞(𝑡1) = 𝑞1

𝑣(0) = 𝑣0 𝑣(𝑡1) = 𝑣1

𝑎(0) = 𝑎0 𝑎(𝑡1) = 𝑎1

With these conditions, the equations (7)-(9) can be converted as follows, to determine 𝑐0 to 𝑐5 (10)-(15):

𝑐0 = 𝜃0 (10)

𝑐1 = 𝑣0 (11)

𝑐2 =
1

2
𝑎0 (12)

𝑐3 =
20(𝑞1 − 𝑞0) − (12𝑣0 + 8𝑣1)𝑡1 − (3𝑎0 − 𝑎1)𝑡1

2

2𝑡1
3 (13)

𝑐4 =
30(𝑞0 − 𝑞1) + (16𝑣0 + 14𝑣1)𝑡1 + (3𝑎0 − 2𝑎1)𝑡1

2

2𝑡1
4 (14)

𝑐5 =
12(𝑞1 − 𝑞0) − 6(𝑣0 + 𝑣1)𝑡1 − (𝑎0 − 𝑎1)𝑡1

2

2𝑡1
5 (15)

As can be seen in the equations, the changes in position, velocity and accelerations are multiplied by higher values

than in third-order polynomials. Therefore, even if the same constraints are applied, the coefficients 𝑐𝑛 will have bigger

values in fifth-order polynomials than in third-order polynomials. This leads to higher peaks in the velocity and

acceleration. In case of fifth-order polynomials, six equations ((8),(11)-(15)) must be solved at runtime to calculate

corresponding velocities depending on time.

4.3. Geometric path

In robotics it is often desired that the end-effector follows a specific geometric path to fulfil its tasks and avoid

obstacles. Such a geometric path can be achieved by, for example, implementing and combining basic movements, like

moving arbitrarily between points (point-to-point movement), following a line (linear movement) or following a circular

arc (circular movement). In this paper, the previously described trajectory planning methods are utilised to implement a

continuous point-to-point and linear movement.

4.3.1 Point to point movement

In a point-to-point movement a start and goal pose are specified in the robot coordinate system. The path that the TCP

follows when moving from the start to the goal pose is unknown. Therefore, this type of movement is effective if no exact

path is needed, like in pick-and-place or palletizing tasks. By combining multiple point-to-point movements, it is possible

to avoid obstacles and approximate a desired geometric path.

In this paper, the movement between a start and goal point is accomplished by calculating velocity profiles for each

of the robot’s joints with the described trajectory planning methods. The calculated velocity profiles are approximated by

sending the corresponding velocities depending on the time, to the motors at different time stamps during the movement.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

 Furthermore, in order to achieve a smooth motion, the robot’s joints are synchronised so that they start and finish

their movement at the same time. Fig. 4 shows an overview of the main process steps that are used to achieve the point-

to-point movement for the miniaturised robots.

Fig. 4: Process steps for the point-to-point movement

The process begins with a start and goal TCP pose, whereby the start pose corresponds to the current pose of the robot.

Inverse kinematics is used to calculate the joint values for the goal pose. Next, the total travel time 𝑡1 is calculated. To

achieve synchronisation, this travel time is the same for all joints. The velocity function 𝑣𝑗(𝑡) is computed for each joint,

taking in consideration the start and goal pose, as well as the total travel time 𝑡1. Depending on the employed trajectory

planning method, also the start and end velocities and accelerations are required. Finally, the computed velocity functions

are employed to move the robot from the start to the goal pose. For a better understanding, the synchronisation and motor

control are discussed in more detail below.

A. Synchronisation

The synchronisation of the joints is achieved by computing a total travel time that is the same for all the robot’s joints.

This ensures that, if the motors are started at the same time, they also reach their target position at the same time. Since

the employed Smart Servos have a high minimum velocity, the calculation of the total travel time is based on the fastest

motor, i.e. the motor that travels the smallest distance to reach its goal position. If this motor were to move with the

minimum velocity, it would need 𝑛 seconds to reach its goal position. To achieve synchronisation, the other motors must

reach their target position at the same time. Therefore, the total travel time is calculated as follows (16):

𝑡1,𝑚𝑎𝑥 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑛

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑚𝑖𝑛

 (16)

,where 𝑡1,𝑚𝑎𝑥 describes the total travel time of the joints, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑛 describes the minimum distance that has to be

travelled and 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑚𝑖𝑛 describes the minimum velocity of the Smart Servos.

As indicated in the equation the corresponding travel time 𝑡1,𝑚𝑎𝑥 is the maximum total time that can be used in the

velocity functions. Otherwise, velocities smaller than the minimum velocity might be computed and it cannot be

guaranteed that all motors move reliably.

B. Motor control

Based on the determined total travel time, the start and goal joint values, velocities and accelerations, the velocity

functions are calculated as described in section 4.2, with either third or fifth-order polynomials. Fig. 5 shows an example

of such a velocity profile of a joint with a travel distance of 10 [°], a total travel time of 𝑡1 = 0.3 [sec] and a start and goal

velocity of 𝑣0 = 𝑣1 = 25 [°/sec]. A third-order polynomial was used to compute this exemplary motion profile.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Fig. 5: Exemplary velocity profile with a total travel time of 𝑡1 = 0.3 [𝑠𝑒𝑐]. The dots indicate the velocities

that are sent to the motors at different time stamps

Note, that for the start and goal velocity a value unequal to zero was chosen. Instead, these parameters were set to a

value slightly below the minimum velocity. As a result, even though the motors start from and end in standstill, no values

smaller than the minimum velocity are computed.

In order to approximate the velocity profile, the velocity is calculated at several time stamps. This is indicated by the

dots in the graph.

Since in trajectory planning, functions of time are computed, the resulting velocities have the unit [°/sec]. To set the

motor velocities, these velocity values must be converted to PWM values. In order to find the correlation between the

motor velocity in [°/sec] and the PWM value, the velocity was measured for different PWM values and linear regression

was applied. This is illustrated in Fig. 6 for positive velocities.

Fig. 6: Motor velocity in [°/sec] in dependence of the PWM value

As can be seen in the graph, a correlation of 𝑦 = 3.5096𝑥 + 8.974 can be obtained. In this context 𝑦 describes the

velocity in [°/sec] and 𝑥 the PWM value. Therefore, the PWM value can be computed as follows (17):

𝑥 =
𝑦 − 8.974

3.5096
 (17)

For a complete robot movement, this correlation must also be computed for negative velocities.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

To summarize, the motor control process is as follows:

1) Calculate the coefficients 𝑐𝑛, based on the total travel time, start and goal position, velocity and acceleration

2) Divide the total travel time 𝑡1 in 𝑘 parts

3) For each time stamp 𝑘:

a) Use the coefficients 𝑐𝑛 to calculate the velocity in [°/sec]

b) Convert the velocity into a PWM value

c) Send the PWM value to the motor

This process must be conducted for each of the 𝑗 motors.

4.3.2 Continuous point-to-point movement

In the previous section, the fundamentals and operating principle of the point-to-point movement between a start and

goal pose were described. However, in some cases, it is desired, that the TCP moves through multiple points in a

continuous motion to approximate a geometric path. This can be achieved by defining start and goal velocities for

intermediate points that are unequal to zero.

Heuristic rules are applied as defined in equation (18) and (19), to determine optimal intermediate velocity [19].

𝑣𝑘 = {
0 𝑠𝑖𝑔𝑛(𝑑𝑘) ≠ 𝑠𝑖𝑔𝑛(𝑑𝑘+1)

1

2
(𝑑𝑘 + 𝑑𝑘+1) 𝑠𝑖𝑔𝑛(𝑑𝑘) = 𝑠𝑖𝑔𝑛(𝑑𝑘+1)

 (18)

𝑑𝑘 =
𝑞𝑘 − 𝑞𝑘−1

𝑡𝑘 − 𝑡𝑘−1

 (19)

In the equations, 𝑣𝑘 describes the calculated intermediate velocity, 𝑞𝑘 the position and 𝑡𝑘 the current time at point 𝑘.

With these rules, the intermediate velocity is set to zero if the motor changes directions and a value unequal to zero if

the direction is maintained. An example of a corresponding position and velocity profile through intermediate points is

depicted in Fig. 7

Fig. 7: Exemplary position (left) and velocity (right) profiles for a continuous point-to-point movement. The

intermediate points are indicated by the dots at t=1.5 [sec] and t=2.5 [sec].

In the graphs, the intermediate points are located at the time stamps t=1.5 [sec] and t=2.5 [sec], as indicated by the

dots. For a better visibility the velocity at the start, end and reversal point were set to zero. In practice, these parameters

would, again, be set to a value slightly below the minimum velocity. In this example, the position and velocity profiles

were calculated with third-order polynomials.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

4.3.3 Linear movement

In a linear movement the robot’s TCP follows a line to move from a start pose to a goal pose. This type of movement

is suitable when an exact path must be maintained to fulfil a task, as it might be the case in assembly, cluing or painting

processes.

The implementation of a linear movement is comparable to a continuous point-to-point movement. However, in a

linear movement, the intermediate points are not defined by the user, but must be calculated by the control system. The

main process steps for the implemented linear movement are depicted in Fig. 8.

Fig. 8: Process steps for the linear movement

The process starts with a user-defined goal pose for the robot’s TCP. The start pose corresponds to the current robot

pose. In the first step, 𝑛 intermediate points are computed to approximate a line. These points are then converted into the

joint space by applying inverse kinematics. In order to make the TCP follow the approximated line, the robot must be

controlled in a way that all joints pass through their intermediate joint positions simultaneously.

A. Computation of intermediate points

In order to compute appropriate intermediate points, first, a line is placed between the start and goal position. Since,

depending on the robot structure, the line can be three-dimensional, it is described with vectors as expressed in

equation (20).

𝑥⃗(𝑠) = 𝑎⃗ + 𝑠 · 𝑚⃗⃗⃗ (20)

(
𝑥
𝑦
𝑧

) = (

𝑝𝑥
𝑠

𝑝𝑦
𝑠

𝑝𝑧
𝑠

) + 𝑠 · (

𝑝𝑥
𝑔

− 𝑝𝑥
𝑠

𝑝𝑦
𝑔

− 𝑝𝑦
𝑠

𝑝𝑧
𝑔

− 𝑝𝑧
𝑠

)

In the equation, 𝑥⃗(𝑠) stands for the x, y and z coordinate of any point on the line, 𝑎⃗ is described by the start point 𝑝𝑠

and 𝑚⃗⃗⃗ by the difference between the start point 𝑝𝑠 and end point 𝑝𝑔. With this definition, the parameter 𝑠 has an interval

of [0,1]. Therefore, an intermediate point 𝑠𝑖 is calculated by dividing through the desired number of points 𝑛 and

multiplying the result with 𝑖 (21).

𝑠𝑖 =
1

𝑛
· 𝑖 (21)

An example of such a three-dimensional line is visualized in Fig. 9. The start point has the coordinates 𝑝𝑠 = (4, 5, 2) 𝑇

and the end point 𝑝𝑔 = (10, 20, 5)𝑇. Eight intermediate points have been calculated with the equations (20) and (21) and

are indicated in the graph by blue dots. The different coloured dots at the start and end of the line show the start and end

point.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Fig. 9: Example of a three-dimensional line with intermediate points indicated by blue dots.

(start point: 𝑝𝑠 = (4,5,2)𝑇, end point 𝑝𝑔 = (10, 20, 5)𝑇, number of intermediate point 𝑛 = 8)

The optimal number of points 𝑛 depends on the length of line and the desired resolution and is calculated as

follows (22):

𝑛 =
𝑙𝑒𝑛𝑔𝑡ℎ_𝑜𝑓𝑙𝑖𝑛𝑒[𝑚𝑚]

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 [𝑚𝑚]
 (22)

B. Motor Control

After calculating and transforming the intermediate points in the joint space, appropriate motor commands need to be

defined to create the correct TCP movement. To ensure that the TCP moves through the intermediate points and therefore

follows the calculated line, all joints need to pass through their intermediate joint positions at the same time. This

behaviour can be achieved by synchronising the motors in between the intermediate points, similar to the point-to-point

movement. However, since for the approximation of a line, the intermediate points are required to be close together, the

distances that need to be traversed by the motors in between points are small, i.e. often an individual joint must only move

by 1 [°]. As described in the motor limitations in section 4.1, this means that in these cases the total travel time 𝑡1 would

assume a value of only 0.036 [sec]. To achieve synchronisation all motors would have to finish their movement in these

0.036 [sec], even if they have to travel higher distances like e.g. 5 [°]. This means that very high velocities are required

for the motors, e.g. 139 [°/sec]. However, the motors are physically limited in their acceleration and deceleration and

therefore, cannot guarantee to stop their movement in such a short time. This leads to high overshoot and makes following

a line with motor synchronisation impossible. Fig. 10 shows an example of the resulting TCP movement with this

approach. The line between the start and end point has a length of 123.76 [mm]. By defining a resolution of 5 [mm], in

total 24 intermediate points have been computed. The movement between the intermediate points was achieved via a

continuous point-to-point movement as described in section 4.3.2. The motion was computed with third-order

polynomials. In the image, the actual TCP movement is depicted in blue, the desired linear movement is indicated by a

dotted line. As can be seen, with this approach, the TCP has an extreme overshoot and its movement is far away from

representing a straight line.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

Fig. 10: Linear movement with motor synchronization. The actual TCP movement is illustrated in blue, the desired

movement with a dotted line. Total length of line: 123.76 [mm], desired resolution: 5 [mm],

 number of intermediate points: 24

A different approach is needed to implement the linear movement of the miniaturised robots. For this, to maintain the

short travel distances and the resulting short travel times between points, the motors are all set to the minimum velocity.

The integrated Smart Servo functions are used to frequently check the current motor position. Once a motor has reached

its target position, it is stopped. To achieve continuity, it is determined which motor must travel the greatest distance in

between two adjacent points. Once this motor reaches a distance of 1 to 2 [°] from its target position, the joint travel

distances to next TCP point are calculated and the motors are, again, set to the minimum velocity.

5. Results

Based on the theoretical knowledge of the applied trajectory planning methods and the practical implementation of

the geometric paths, this section focuses on analysing and discussing the results. In particular, the smoothness of the TCP

movement and the absolute positioning accuracy of the trajectory planning methods and geometric paths are examined.

5.1. Comparison of third- and fifth-order polynomials

To choose the optimal trajectory planning method, first the results of third- and fifth-order polynomials are compared.

Fig. 11 shows the TCP movement of the RRR SCARA when applying the respective methods and moving between a start

and goal pose.

Fig. 11: TCP movement of the RRR SCARA with third-order polynomials (left) and fifth-order polynomials (right)

For both examples the robot started from the home position and was sent to the same goal position. As can be seen in

the images, in both cases, the movement of the TCP is a lot smoother than in the start state (see Fig. 2). No jumps, in the

form of jerk, are visible in the recorded movements. Therefore, both third- and fifth-order polynomials satisfy the criterion

of smoothness.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

In terms of the accuracy, varying results could be observed. The robot was started from and sent to different positions

and the absolute positioning error in x and y as well as the angular error of the motors were calculated. Due to the low

repetitive accuracy of the Smart Servos, the actual TCP positions were computed from the joint positions via forward

kinematics. Table 2 summarises the minimum, maximum and average positioning errors as well as the median of five

individual point-to-point movements.

Method Min

[mm]

Max

[mm]

Average

[mm]

Median

[mm]

3rd-order

polynomial
0.55 29.4 10.26 5.05

5th-order

polynomial
0.95 31.81 11.91 11.17

Table 2: Minimum, maximum and average absolute positioning error and median of five individual point-to-point

movements for both third- and fifth-order polynomials

As can be seen, with third-order polynomials, smaller errors can be achieved in all four columns. The slightly higher

positioning errors of fifth-order polynomials can be explained by the fact that with this method overall higher velocity

values are computed. Fig. 12 shows the velocity profiles of all three joints of the RRR SCARA for a point-to-point

movement as computed by third- and fifth-order polynomials. In the graphs, the synchronisation of the motors is visible,

as their motion starts and ends at the same time. In the depicted example, the second joint of the robot travels the shortest

distance and consequently the velocity profile stays close to the minimum velocity. In both third- and fifth-order

polynomials this joint reaches its exact target position of 18 [°]. The first joint has to move by the furthest distance of

53 [°]. In third-order polynomials, the velocity of this joint peaks at a value of about 100 [°/sec]. In fifth-order polynomials

a maximum of about 120 [°/sec] is calculated. Both velocity values are so high, that the motor overshoots and misses its

target position. However, since the third-order polynomial in generally produce smaller velocity values, it achieves an

overall higher positioning accuracy.

Fig. 12: Velocity profiles of all three RRR SCARA joints for a point-to-point movement, calculated with third-order

polynomials (left) and fifth-order polynomials (right)

The variation of the absolute positioning errors of the individual trajectory planning methods can be traced back to

the synchronisation of the motors. The greater the differences in distances that the individual motors have to travel, the

higher the velocity peaks. High velocity peaks lead to high overshoot and consequently low positioning accuracy.

In overall, third-order polynomials prove to be more suitable for the employed Smart Servos. The method achieves a

better positioning accuracy than fifth-order polynomials whilst showing the same path smoothness. The fact, that the

second derivative of third-order polynomials is not continuous, does not have visible effects on the motion of the robot.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

5.2. Continuous point-to-point movement

Third-order polynomials were chosen to implement a continuous point-to-point movement for the RRR SCARA. The

smoothness of the geometric path is the same as in the discontinuous point-to-point movement. However, differences in

the accuracy can be observed.

Experiments revealed that the angular positioning accuracy of the motors is higher at intermediate points where a

change of direction occurs and the velocity is set to zero. These reversal points show an average error of 0 to 2 [°], whereas

the average angular error at points with an intermediate velocity unequal to zero lies between 3 and 11 [°]. For the

experiments the TCP of the RRR SCARA was moved five times through three intermediate points and the angular

positioning error of the individual joints where determined. Overall, an absolute positioning error of the TCP of 12 [mm]

in x and 4 [mm] in y could be obtained.

5.3. Linear movement

In case of the linear movement, due to the limitations of the minimum velocity, no smooth geometric path of the

robot’s TCP can be obtained. Fig. 13 shows the resulting TCP movement of the RRR SCARA with the implemented

approach of the linear movement where all motors move with the minimum velocity. For the movement, the same

constraints for the start and goal pose as well as the number of intermediate points as in Fig. 10 in section 4.3.3 were

chosen.

Fig. 13: TCP movement of the RRR SCARA with the implemented linear movement

As can be seen, with the implemented approach, the TCP movement does resemble a better line than in the continuous

point-to-point movement in Fig. 10. However, since some of the motors are constantly stopped in between the

intermediate points, there are a lot of jumps in the resulting TCP path. In the actual movement, these jumps correspond

to jerk.

However, the employed implementation of the linear movement leads to a high positioning accuracy. After five

experiments with different start and goal positions a median of the positioning error of 0.85 [mm] was obtained.

6. Conclusion and outlook

The morobot platform focuses on producing miniaturised industrial robots for educational purposes. However, the

original implementation of these robots came with the limitation of jerky movement and no possibility to create a

continuous geometric path. In this paper, trajectory planning was applied to enhance the morobot platform and achieve

smooth motions as well as implement a continuous point-to-point and linear movement. Due to the high minimum velocity

of the employed motors in the robot’s joints, third- and fifth-order polynomials were chosen to be compared. The methods

are used to calculate velocities in dependence of time that are sent to the motors to achieve a desired movement of the

TCP. To ensure smooth motions, motor synchronisation is employed by defining an overall total travel time for all motors.

The results showed that third-order polynomials achieve a higher absolute positioning accuracy whilst producing the same

smooth motions as fifth-order polynomials. Therefore, third-order polynomials were chosen to implement the continuous

point-to-point movement. Compared to the start state, the movement of the robot is a lot smoother as there is no jerk

visible anymore. The positioning error of the developed motor control ranges from 0.5 [mm] up to 30 [mm]. It can be

explained by high velocity peaks, that are caused by the already high minimum velocity, and result in overshoot.

Additionally, to the continuous point-to-point movement, also a linear movement was implemented. Because of the

high minimum velocity, the use of trajectory planning and motor synchronisation was not possible. Therefore, only a very

jerky movement could be achieved.

Both the high positioning error as well as the jerky linear movement might be solved by utilizing motors with a smaller

minimum velocity. It would lead to smaller velocity peaks and consequently less overshoot and a higher accuracy. A

smaller velocity would also allow to use trajectory planning to create smooth motions for the linear movement.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION

7. References

[1] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F. (2020). ARI: the Social Assistive Robot and Companion. In: 29th

IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 31 August – 4 September 2020,

Naples. Naples, Italy: IEEE, pp. 745-751.

[2] Ahmed, H., La, H., (2019). Education-Robotics Symbiosis: An Evaluation of Challenges and Proposed Recommendations. In:

2019 IEEE Integrated STEM Education Conference (ISEC), 16 March 2019, Princeton. Princeton, NJ, USA: IEEE, pp. 222-229.

[3] Curto, B., Moreno, C., (2016). Robotics in Education. Journal of Intelligent & Robotic Systems. 81(1), pp.3-4.

[4] Abu-Dakka, F., Rubio, F., Valero, F., Mata, V., (2013). Evolutionary indirect approach to solving trajectory planning problem

for industrial robots operating in workspaces with obstacles. European Journal of Mechanics – A/Solids. 2013(42), pp. 210-218.

[5] Pratihar, D., (2017). Fundamentals of Robotics. Oxford: Alpha Science International Ltd.

[6] Bai, Y., Yang, X., Huang, W., (2020). Research on trajectory optimization of handling robot based on ABB. In: 2020 3rd World

Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 4-6 December 2020, Shanghai. Shanghai,

China: IEEE, pp. 109-113.

[7] Devi, M., Prakash, C., Jadhav, P., Hebbar, P., Mohsin, M., Shashank, S., (2021). Minimum Jerk Trajectory Planning of

PUMA560 with Intelligent Computation using ANN. In: 6th International Conference on Inventive Computation Technologies

(ICICT), 20-22 January 2021, Coimbatore. Coimbatore, India: IEEE, pp. 544-550.

[8] Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J., Peng, Y., (2019). Smooth and time-optimal S-curve trajectory planning for automated

robots and machines. Mechanism and Machine Theory. 2019(137), pp. 137-153.

[9] Zheng, X., Zheng, Y., Shuai, Y., Yang, J., Yang, S., Tian, Y., (2019). Kinematics analysis and trajectory planning of 6-DOF

robot. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 15-17

March, Chengdu. Chengdu, China: IEEE, pp. 1749-1754.

[10] Parikh, P., Dave, J., (2020). Trajectory Planning for the Five Degree of Freedom Feeding Robot Using Septic and Nonic

Functions. International Journal of Mechanical Engineering and Robotics Research. 9(7), pp. 1043-1050.

[11] Rout, A., Mohanta, G., Gunji, B., Deepak, B., Biswal, B., (2019). Optimal time-jerk-torque trajectory planning of industrial robot

under kinematic and dynamic constraints. In: 9th Annual Information Technology, Electromechanical Engineering and

Microelectronics Conference (IEMECON), 13-15 March 2019, Jaipur. Jaipur, India: IEEE, pp. 36-42.

[12] Duan, H., Zhang, R., Yu, F., Gao, G., Chen, Y., (2016). Optimal Trajectory Planning for Glass-Handing Robot Based on

Execution Time Acceleration and Jerk. Journal of Robotics. Vol. 2016, pp. 1-9.

[13] Li, G., Wang, Y., (2019). Industrial Robot Optimal Time Trajectory Planning Based on Genetic Algorithm. In: 2019 IEEE

International Conference on Mechatronics and Automation (ICMA), 4-7 August 2019, Tianjin. Tianjin, China: IEEE, pp. 136-

140.

[14] Chen, X., Zhang, W., Shi, Y., Fan, D., Zhang, T., Liu, G., Li, Q., Huang, Q., (2017). An energy optimization based planning

approach for moving bottle grasping task using a seven-DoF robotic arm. In: 2017 IEEE International Conference on

Mechatronics and Automation (ICMA), 6-9 August, 2017, Takamatsu. Takamatsu, Japan: IEEE, pp. 833-839.

[15] Chiddarwar, S., Babu, N., (2012). Optimal trajectory planning for industrial robot along a specified path with payload constraint

using trigonometric splines. International Journal of Automation and Control. 6(1), pp. 39-65.

[16] Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R., (2012). Trajectory Planning in Robotics. Mathematics in Computer

Science. 6(3), pp. 269-279.

[17] Ratiu, M., Prichici, M., (2017). Industrial robot trajectory optimization- a review. In: Annual Session of Scientific Papers IMT

ORADEA 2017, 27-29 May (2017), Sanmartin. Sanmartin, Romania: EDP Sciences, pp. 54-59.

[18] Makeblock, (2021). Smart Servo MS-12A [Datasheet] Available at: https://www.manualshelf.com/manual/makeblock/950

80/data-sheet-english/page-5.html [Accessed on 14 December 2021]

[19] Biagiotti, L., Melchiorri, C., (2008). Trajectory Planning for Automatic Machines and Robots. Berlin: Springer Science &

Business Media.

W
or

kin
g P

ap
er

 of
 34

th
DAA

AM
 S

ym
po

siu
m

