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Abstract 

 

The goal of the proposed research is the development of indirect sanding paper wear level and surface quality estimation 

models for sanding of thin-walled structures. The models should be applicable in robotic sanding systems in real time. 

Since the dynamics of tool wear appears highly nonlinear even in the conventional machining processes, it can be assumed 

that an array of impacting factors will occur due to lower rigidity of the robot, elastic deformation of the thin-walled 

workpieces, and due to a damping effect of the tool interface. Additionally, it can also be expected that the factors will 

have a negative influence on the development of the models. Therefore, to realize the research, a number of experiments 

will be conducted in order to determine the effect of machining parameters on the sanding paper wear dynamics. 

Subsequently, determination of the process parameters sensitive to change in tool state and/or workpiece surface quality 

will be conducted. Lastly, design of the sanding paper wear and workpiece surface quality estimation models will be 

carried out. By successfully realizing the aforementioned models, preconditions for achieving higher autonomy in 

automated robotic sanding systems will be established.  
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1. Introduction 

 

Application of robots in finishing processes is one of significant trends in the development of state-of-the-art 

machining systems, and sanding processes are among the most performed finishing processes. Such systems are, in most 

cases, equipped with an axial force control drive, on which a main drive with a sanding tool with an elastic interface is 

mounted. Sanding tools are subjected to intensive wear resulting from mechanical, thermal, and chemical loads during 

sanding. Negative impact of tool wear on the workpiece surface quality is noticeable even in the early stages of tool wear. 

Consequently, sanding paper is frequently replaced, potentially causing unnecessarily frequent process interruptions and 

hence, unnecessary costs. 

The moment in which the tool needs to be replaced is, in most cases, determined based on human experience. 

Nevertheless, today, when the highest possible level of machining process autonomy is sought for, such type of estimation 

is unacceptable for a number of reasons. If a certain amount of tool wear is exceeded, workpiece surface quality will 

deteriorate. 
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On the other hand, if the maximum threshold value of tool wear is not achieved, sanding paper is going to be 

prematurely discarded and the manufacturing process frequently interrupted. For that reason, a reliable and efficient 

method of indirect process monitoring, applicable during the process in real time, is of great importance for achieving 

high productivity, as well as high product quality [1], [2]. 

Although research done so far in the field of indirect process monitoring showed that robust tool wear models are 

attainable, the studies were often conducted on machining processes with geometrically defined cutting tools, and with 

the interfaces of tool, machine tool, and workpiece being rigid [3]. Even in those conditions, achieving a universal and 

generally applicable model for tool wear or surface quality monitoring was not possible due to the highly nonlinear and 

stochastic nature of tool wear. For that reason, such monitoring systems are almost always developed according to the 

specific characteristics of a machining process [1]. 

There are two main approaches in machining process monitoring – monitoring based on direct and indirect methods 

[4]. In direct methods, the information on tool wear level or state of the surface in acquired by directly measuring the tool 

or the machined surface features. Even though the accuracy of the measured value is the advantage, the main disadvantage 

of the method is the inability to be used during machining [5]. In other words, frequent interruptions to the machining 

process are caused in order to carry out the measurements. 

Indirect methods can be applied in real time, during the machining process but the correlation between process 

parameters and tool or surface state must be established beforehand. Any machining process characteristic measurable or 

determinable during machining can be considered as a process parameter. These methods generally facilitate multiple 

different types of sensors. Amongst most commonly used are force [6], [1], [7], current [8], vibration [9], [1], acoustic 

emission [10], [1], and sound [11], [7], [1] sensors. After the signal acquisition, a number of features sensitive to change 

in tool state and/or workpiece surface quality, are extracted and used in tool wear and surface quality estimation models. 

Unlike direct, indirect methods do not require a disruption to the machining process and can in some cases significantly 

shorten overall machining time, which makes them suitable for industrial environments. 

When it comes to tool condition monitoring in robotic finishing processes, research has been mostly done on belt 

grinding and polishing. Ren et al. [7] developed a method for machine learning based workpiece heat input monitoring in 

robotic belt grinding of Inconel 718 using force and sound sensors. They concluded that the heat input is influenced by 

grinding parameters and the state of the grinding tool. Between the state of the grinding tool and the force and sound 

signals, a clear correlation was discovered. The result of work done in [12] is a robust method of grinding belt condition 

monitoring in a robotic grinding system of superalloys, accomplished by utilizing sound signals and a machine learning 

method. An evaluation of the grinding belt condition was successfully performed by a neural network based multi-sensor 

system developed in [1], in which vibration, force (Fx and Fz) and acoustic emission sensors were used. In a study done 

by Chen et al. [13] a grinding belt condition monitoring system was proposed. The system uses a model based on random 

forest (RF) classifier and multiple linear regression (MLR) which use acoustic emission signal features as input data. 

Acoustic emission signals and tool condition revealed considerable correlation. Pandiyan et al. [6] have suggested a 

method of identifying the compliant belt grinder condition by means of force, acoustic emission, and vibration signals 

whose features were employed to train the support vector machine algorithm. As a result, a high-accuracy tool condition 

prediction model was attained. Meier et al. [14] developed a model for polishing stone breakage detection and 

determination of the optimal time for tool replacement in robotic polishing based on acoustic emission and force sensors. 

In [15] acoustic emission, force and current sensors were used in a robot-assisted polishing process to estimate the correct 

time for tool replacement (end-point detection), in order to maintain the desired surface roughness. A robust surface 

roughness classification model based on an artificial neural network was obtained. 

In [16] a parameter optimization for manual sanding of black pine was conducted based on the relationship between 

process parameters (feed rate, grit size, spindle speed), and the achieved surface roughness. Motivated by the exposure of 

workers to harsh working environments (orbital sanding tool simultaneously executes rotary and eccentric motion to 

attain better surface quality and consequently, produces dust, noise, and vibrations), Nagata et al. [17] developed a robotic 

system for sanding furniture with free-formed surfaces. Robotic sanding systems were also utilized in naval industries 

[18] as a solution to problems with large, stationary parts. In research by Putz et al. [19] a step closer to an autonomous 

robotic system has been made by presenting a successful method of automated tool alignment, necessary for automated 

sanding paper replacement.  

The industry has shown considerable interest in robotic machining despite the challenges they pose [20], [21]. Robotic 

machining systems have considerably lower rigidity compared to machine tools. However, due to their ability to perform 

complex tool paths in a relatively large working area they are facilitated in finishing processes that require lesser forces 

and accuracies during machining. Such systems are also commonly utilized in sanding of large, thin-walled structures. 

The sanding process is performed with a geometrically undefined tool with an elastic interface that, on one hand, 

allows for better adherence to the workpiece surface, but on the other, causes a dampening effect. In addition, workpieces 

such as thin-walled structures are prone to elastic deformation. Therefore, despite the many advantages robotic cell 

application offers, it is expected that the aforementioned disturbances (e.g. vibration signals that could result from change 

in tool and/or surface quality state, would be dampened by the elastic interface) may make the existing process monitoring 

models difficult to apply. Additionally, even though machining process monitoring has been widely studied, not many 

have dealt with robotic finishing, and hardly any research has been done on robotic sanding. Hence, research on the 

possibility of attaining sanding paper wear level and workpiece surface quality estimation models specifically designed 

for the robotic sanding process of thin-walled structures is proposed. The goals of the research would be: 
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1. To determine the effect of cutting parameters (spindle speed, feed velocity, and axial force) on the dynamics of the 

sanding paper wear. 

2. To determine the effect of cutting parameters and level of sanding paper wear on workpiece surface quality. 

3. To determine the process parameters (sensor signal features) sensitive to changes in the sanding paper wear level. 

4. To determine the process parameters (sensor signal features) sensitive to changes in workpiece surface quality. 

5. To develop robust sanding paper wear level and workpiece surface quality estimation models applicable in real time 

during the sanding process. 

 

The experimental setup and the research method will be described in the following section. Lastly, in section 3., a 

conclusion will be given. 

 

2. Experimental system 

 

The research will be carried out in three phases. In the first phase, the experimental setup ( 

Fig. 1) will be developed. The setup will consist of two industrial robots of which the first one (ABB 6660) is equipped 

with a main drive for sanding.  

 

 
 

Fig. 1. Robotic sanding cell (left: ABB 6660, middle: IRBP A with the clamping system, right: ABB 4600) 

 

The main drive for sanding is realized through a precise force control unit with a mounted orbital sander ( 

Fig. 2). The orbital sander includes an elastic interface pad for the sanding paper. Different sorts and granulations of 

sanding paper will be used. 

 

 
 

Fig. 2. Mirka® AIROS 650CV orbital sander for industrial robots [22] 

 

Vibration (Fig. 3, left), acoustic emission (Fig. 3, right), and sound sensors (Fig. 4), as well as a thermal imaging 

camera (Fig. 5) will be mounted in proximity to the main drive. 

 

  

Fig. 3. KISTLER triaxial accelerometer [23] (left), and acoustic emission sensor [24] (right) 
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Fig. 4. 16SoundsUSB sound card [25] (left); example of an 8SoundsUSB system microphone array [26] (right) 

 

 

Fig. 5. Teledyne thermal imagining camera Flir A700-EST, 24° Lens [27] 

 

In between the two robots, a rotary-swivel table (IRBP A) with a suitable clamping system for the workpiece will be 

placed. This research will be conducted on relatively large and thin-walled composite structures. On the second robot 

(ABB 4600), an optical 3D measurement instrument for automated form and roughness measurements (Alicona IF-

SensorR25) (Fig. 6) will be mounted. 

 

 

Fig. 6. Alicona IF-SensorR25 [28] 

The experiment will cover a large number of sanding cycles including different: 

a. combinations of cutting parameters (feed velocity, spindle speed, axial force), 

b. types of sanding papers (at least three different granulations) – that will be worn out to different degrees (at least 

three levels of wear), 

c. types of workpieces with dissimilar geometrical features (at least two types of workpieces – homogenous and 

composite). 

 

Tool wear level and workpiece surface quality will be determined with the Alicona optical sensor, before and after 

each cycle of sanding. Vibration, acoustic emission, sound signals, and a thermal image of the workpiece surface will be 

recorded during the sanding cycles. In the second phase (after completing all tests) the acquired information will be 

processed and analysed. Features will be extracted from recorded signals and images and examined to determine their 

sensitivity to changes in tool wear and/or workpiece surface quality. In the third phase, a portion of the extracted features 

will be used for the tool wear estimation model formation, and the rest will be used to obtain the workpiece surface quality 

estimation model. In the proposed research the estimation models will be based on artificial intelligence algorithms since 

the high complexity of the tool wear process makes statistical models unsuitable for this application [29]. 
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3. Conclusion 

 

 Machining process monitoring models are not universal and generally applicable, and their successful implementation 

depends on specific process characteristics. Although robotic machining process monitoring has been studied, research 

on robotic sanding is quite scarce. Therefore, the formation of sanding paper wear level and workpiece surface quality 

estimation models would be conducted for the set process – robotic sanding. Robotic sanding has its advantages, but 

problems such as: lower rigidity of the machine performing the process, commonly used large, thin-walled workpieces 

prone to elastic deformation, undefined geometry of the sanding paper, and the dampening effect of the sanding paper 

elastic interface are expected to contribute to the difficulty of applying the existing models obtained so far and are also 

expected to be a challenge in obtaining the new models. 

 In the proposed research the possibility of developing a multi-sensor based sanding paper wear level and workpiece 

surface quality monitoring system will be studied. The aim is to determine the effect of cutting parameters on sanding 

paper wear and the effect of cutting parameters alongside the level of sanding paper wear on workpiece surface quality. 

Lastly, the objective would also be to determine the process parameters sensitive to change in sanding paper and/or 

workpiece surface quality and to develop robust sanding paper wear level and workpiece surface quality estimation 

models applicable during sanding process in real time. The suitability of signal features extracted from vibration, 

acoustic emission, and sound signals, along with the thermal image would be investigated and potentially used for the 

formation of estimation models based on artificial intelligence. 

 Successful realization of the proposed models would create preconditions for development of a robotic sanding 

monitoring system in real time. By obtaining the models, the level of robotic sanding system autonomy would be 

significantly increased and a foundation for adaptive control of cutting parameters (feed velocity, cutting speed, and axial 

force) would be established. 
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