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Abstract 

 

Absolute accuracy of industrial robots as well as good repeatability is very important technical characteristics in such 

tasks like machining operations and using the robot as a measuring system. The goal of work is to propose a geometrical 

approach for axis orientation parameters calibration of industrial robot based on laser tracker measurement. For the 

process of parameters identification using CPA-analysis, that allows determinate positions of robot joint axes. 

This article demonstrate procedures that permit change first axes orientation of 6 DOF industrial robot kinematic for 

compensation of the non-coaxiality and non-perpendicularity of some axis solving direct kinematic. Our approach is 

based on conjoint rotation. Obtained functions approximated by polynoms. 
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1. Introduction to the geometrical approach 

 

Application of industrial robots for machining is an actual task, since it can highly increase technological 

flexibility and economic effectiveness in comparison with traditional CNC machining. 

Robots need a high value of absolute accuracy for robotic based machining tasks performance. The tool center 

point (TCP) needs to be positioned and orientated without significant errors with respect to the workpiece, outside all its 

volume during off-line programming [1]. Improving of absolute accuracy is possible only for robots with good 

repeatability using structural and parametrical change of the mathematical model and identification of its parameters for 

the robot control system. In other words – using a calibration procedure.  

At the present time for positioning and orientation tasks under precise control of modern industrial robots using 

analytical and numerical iterative methods. Analytical method [2] provides single-shot direct and inverse kinematic tasks 

solving. Using numerical iterative method [3, 4] for achieving desired precision direct and inverse kinematic tasks are 

solved in several iterations. Also, using numerical iterative methods, it is possible to use a big number of parameters. But 

if the number of parameters is increased then computation time, also increased. For analytical approach the number of 

parameters is limited. Since, if we add even one parameter then it is necessary to found new analytical solution of inverse 

kinematic task. 

In both cases for industrial robot calibration it is necessary to provide identification of mathematical model to 

determine joint offsets, actual length of the links, misalignments between them and some other parameters. Depending 

on factors, causing inaccuracies, calibration parameters of industrial robot models are divided in 3 levels [5]: 

 

 The first level is joint calibration 

 The second is the calibration of geometrical parameters. 

 The third is calibration of non-geometrical parameters. 

 
The developed geometrical approach provides calibration procedures related to first and second level. 

The first level calibration means accurate determination of joint coordinate values i
  (i=1…m, where m is number of 

joints of manipulator) in accordance with the next formula: 

 

1 2i i i ik n k    (1) 

 

where 
in  – is the pulse count from the encoder output, that represent link location, 

1ik  – the angle represented by each 

pulse, 
2ik  – zero offset in i  joint. 

Using this linear model the sensors of the robot are calibrated and installed to zero offset. 
For obtaining greater accuracy, a more complex non-linear model with a harmonic component is used. It calibrates the 

eccentricity between gears in the gear box: 

 

1 2 3 4 5sin( )i i i i i i i ik n k k k n k      (2) 

 

where 
3ik  – harmonic amplitude, 

4ik  – represent eccentricity between gears and 
5ik  – phase shift. 

That model depends of nonlinearity type, that occurs in joint. 

We propose a new approach, that besides of this nonlinearity in joint coordinate 
i , has additional nonlinear component 

i , that depends of joint j current position (j=1…m, where m – is the number of joints). Joint j depends of the factor that 

is necessary to eliminate by calibration.  

As a result, total value of joint '

i  taking additional nonlinear component into account, can be expressed by: 

 
'

i i i     (3) 

 

where additional nonlinear component can be expressed by polinomial dependence with k  orders in accordance with the 

formula: 

 
1 1

1 1 0...k k

i k j k j jа а а а   

      (4) 

 

Polynomial coefficients 
0...kа а  represents values of geometrical dependence on second level calibration. 

For the description of industrial robot geometrical parameters a standard DH representation is used [6] that transform 
joint space into Cartesian space describing the transition from previous link to next link in model form: 
 

1 (z ,d ) ( , ) ( , ) ( , )i

i i i i i i i i iA Trans Rot z Trans x a Rot x       (5) 
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where (h , )i iTrans   and Rot(h , )i i  – homogeneous matrixes of translation and rotation respectively. h i
 - rotation or 

translation axis (
ix ,

iy  or 
iz ) of frame i , 

i  - rotation angle or translation length ( d i
, 

i , 
ia , 

i , 
i , 

ig ) of frame i . 

Extended representation of this structure expressed as: 
 

1 (z ,d ) ( , ) ( , ) ( , ) ( , ) ( , )i

i i i i i i i i i i i i iB Trans Rot z Trans y g Trans x a Rot x Rot y          (6) 

 
Model (6) describes industrial robot geometry better, since it includes 2 additional homogeneous matrixes, that defines 

rotation 
i  and translation 

ig  along the 
iy  axis.  

However, adding those 2 parameters significantly complicate analytical solution of the inverse kinematics. In this case it 

is reasonable to use numerical iterative solutions. The developed approach excludes the 
i  and 

ig  parameters from 

homogeneous matrix structure (6), and forces the robot to change projection angles of its movements in the process of 
identification, including in the first calibration level additional joint coordinates. The main goal of this approach is the 
calibration of geometrical inaccuracies using conjoint rotation. 

It is reasonable to primarily apply this approach for serial 6 DOF industrial robot calibration of last 3 joints. Last 
3 joint axes not intersect in one point because of assembly inaccuracies and production procedures of robot. This initial 
condition doesn't allow to find accurate analytical solution of inverse kinematics. 

In the article M. Švaco, B. Šekoranja, F. Šuligoj and B. Jerbic [7] parameters approximation of industrial robot 
kinematic chain provide using the “black box” method. Expressions describing polynomial dependencies are obtained 
analytically. The method of CPA-analysis is used for parameters identification [8, 9], that allows to determinate the 
industrial robot joint axes position. Error evaluation of joint axes centers determination was investigated in [10]. 
 

2. Results of experimental research 

 

Identification is performed using experimental setup presented at the figure 1. Measuring of robot trajectory 

points during identification were made by dynamic measurements. Nonlinear least squares method with Levenberg 

algorithm was used for processing of the obtained data [11]. 

 

 
 

Fig. 1. Experimental setup: 1 – industrial robot Gelios 20, 2 – laser tracker LTD800, 3 – reflector of laser tracker, 4 – 2 

axis positioning table.. 

 

Analytical expressions were obtained using geometrical approach. For validation of those expressions 2 

experiments using Gelios 20 industrial robot (payload 20 kg) were provided. An experimental data shows reducing of 

non-coaxiality and non-perpendicularity of the industrial robot wrist axes. 

 

2.1. Non-perpendicularity compensation between 5th and 6th axes of manipulator 

 

During identification of the industrial robot Gelios 20 geometrical parameters [10], after calibration of joint 

coordinate zero offsets the non-perpendicularity of the 5th and 6th axes was found. The angle between those axes is 89,912˚. 

This problem is related to production errors and assembly of manipulator and expressed by the angle
5 . Ideally this angle 

must be equal to 0, but in this case it is equal to 0,088˚. If we recalculate this value into the length of the 5th axis it gives 

a 0,255 mm displacement. The error influence can be reduced using additional movement 
6  by 6th joint when the 5th 

joint is moving. For that issue we should solve the geometrical task showed at the figure 2 (a, b). 
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Fig. 2. (a) Conjoint rotation of 5th и 6th joints for reducing of non-perpendicularity; (b) projection of required points on 

plane CGB. 

 

In this figure we can see the conjoint rotation trajectory of 5th и 6th joints: when the 5 axis moves on angle 
5 , the 6 

axis moves on angle 
6  in such a way that the H (TCP) point projection – point N lands up on the interval AB. So, the 

main question of this task is deflection of the projection CB of TCP the trajectory on the angle
5 , for moving point N on 

projection AB. In the figure 2 (a) we also can see: plane β of 6th joint rotation if we elevate the 6th axis on the angle 
5  

and projection LM from interval FG if 
6 0  . In the figure 2 (b) we can see the plane CGB using for projection points 

E, F and L. 
Using simple geometry we can obtain initial conditions and the relation between elements. First, 

BC=DE=EF=CG=
6d  - is the 6th link length and DB=LM=FG=FH=

6a  - is the displacement of TCP from the 6th joint 

rotation center. Second, points K, N and H’ are H point projections to FG, AB lines and CGB plane, and N’ and O points 
are H’ point projections to CB and GM lines respectively. Third, all CGB plane parameters are EFD plane projections, 
so ΔEFL = ΔCGM. 

For solving this task, first it is necessary to consider ΔGOH’: the angle OGH’ is equal to 
5  angle (figure 2(b)), and 

5sin( ) is equal to OH’/GH’ (GH’=KH). Then from ΔFHK (figure 2(a)) we can determine KH as 
6 6a sin( ) . Now we 

should identify N’B as the difference between CB and (CM+MN’), where MN’=OH’ and CM is equal to
6 5cos( )d  . After 

that, we should obtain NN’(NN’=HH’=KG). Where KG is the difference between intervals (FG-FK), and FK is equal to 

6 6a cos( ) . In the end, we can define the 
5( )tg   as the ratio of interval NN’ to N’B and obtain nonlinear equation: 

 

6 5 6 5 5 6 6 5 5 6 6 6d ( ) d cos( ) ( ) sin( ) sin( ) ( ) cos( )tg tg a tg a a                  (7) 

 

Solving that equation it is possible to obtain the 
6 rotation angle value for conjoint rotation with the 5th axis for moving 

along 
5  projection: 

 
2 2 2

5 5 5 51,2

6 2 2

5 5

sin( ) ( ) ( ) sin ( ) ( ) (P) 1
arcsin( )

sin ( ) ( ) 1

tg P tg

tg

   


 

       
  

  
 

 (8) 

 

where 

 

6 5 6 5 5

6

d ( ) d ( ) cos( )
1

tg tg
P

a

     
   (9) 

 

The equation (8) contains 2 solutions for 
6  angle: one positive and one negative. 

So that an angle value is identical and symmetrical in relation to 
5  it is necessary to select for negative values 

5  negative 

solutions 
6  and for positive values 

5  negative positive 
6  respectively. The function graph before and after 

polynomial approximation is presented on the figure 4 in the section 3. 

After reidentification, the angle value between 5th and 6th axes is equal to 89,993˚, reducing systematic error due to 
5  

angle up to 10 times 
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2.2. Non-coaxiality compensation between 4th and 6th axes of manipulator 

 

In the same way as for non-perpendicularity in the identification process the non-coaxiality of the 4th and 6th joint 

axes was found. The distance between axes is about 0,342 mm. Influence of that error which could be reduced by means 

of 2 additional movements 
6 6th joint and 

5 5th joint when the 6th joint moves. For this propose it is necessary to solve 

the geometrical task presented on the figure 3(a,b). 

 

 
 

Fig. 3. (a) Conjoint rotation of 5th and 6th joints for non-coaxiality reducing; (b) rotation of the 5th joint for combining 

4th and 6th joints trajectories. 

 
The figure 3 illustrates 5th and 6th conjoint rotation. Apply the projection of 4th joint trajectory as the base 

trajectory. Points D and F belong to 6th joint trajectory with center at point A, point E belongs to 4th joint trajectory with 
center at point B. Point C - the common and first point of those 2 trajectories. Interval BL is parallel to AC, AH is 
perpendicular to LB. For decreasing influence of non-coaxiality it is necessary that the projection of 6th joint trajectory 
repeats the projection of 4th joint trajectory, i. e. point D locates in point E in each moment of time. For that reason we 
apply 2 additional rotations: 

5  (figure 2 (b)) – at a distance of EF (EF=RT) and 
6  (figure 2 (a)) – around point A. 

Again, using simple geometry we can obtain initial conditions and the relation between elements. First, 
AC=AD=AF=

6l  - TCP displacement from point A, BC=BL=BE =
4l  - TCP displacement from point B, GR=GT=

6d  – 

length of 6th link and AB=Δ. Second, angle BCA equals to angle LBC. Third, 
6  = 

4 . 

For industrial robot Gelios 20 a special situation is typical: 2 circles have only one intersection point or the 
second point is located in a small distance. So it is not necessary to reinstall joint coordinate zero offset

62k . And solutions 

for 
6  top and bottom parts of circle are symmetrical or almost symmetrical (when the small AH), so it is possible to 

use only one indicator. This indicator is equal to 1 when 
6  is positive, and -1 when 

6  is negative. In case when AH 

has big length it is necessary to use either a complex function, that should be represented using several indicators or 
change zero offset 

62k  to a case where points C, A and B will be located on one or “on almost one” line. 

For solving set task it is necessary to determine an angle BCA and an angle EBL, which is equal to the difference between 

angles 
4  and LBC. For projection determination of points E on BL we can use following expressions: 

4 6’ sin( )EO l    

and 
4 6’ cos( )BO l   . For OF and EO determination it is necessary to find out following: an angle ABC, projections BH 

and AH, length OA (BO’-BH) and angle CAF. Than FE can be expressed as a difference between EO and indicator OF . 

In the end, after all manipulations, we obtain nonlinear equations: 

 

4 6
4 6 6

6

5

6

cos( ) cos(Q)
sin( ) sin(Q) indicator sin(arccos( ))

arcsin( )

l
l l

l

d






   
      

  (10) 

 

4 4

6 4

6

cos( ) cos(Q)
(arccos( ))

l
indicator

l


 

   
    (11) 

 

where 

 
2 2 2 2 2 2

4 6 4 6

4 4 6

arccos( ) arccos( )
2 2

l l l l
Q

l l l

    
 

   
 (12) 
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Graphs of these functions, before and after polynomial approximation, is presented on the figure 5. 
After reidentifacation the value of non-coaxiality between 4th and 6th axes is equal to 0,142 mm, that is in 2 time lower, 
than the value, obtained before compensation. 

Unfortunately, this approach is decreasing non-coaxiality using the elimination of displacement between axes; 
nevertheless, include additional error of orientation, which is caused by a small displacement of 5 th axis. But, this error 
can be decreased by increasing the TCP distance from center of the robot’s flange. Also, it is important to hold in mind, 
that a significant increase of backlash in the gear-box for this approach is totally unacceptable, so for represented 
technique it is appropriate to use modern approaches which can significantly reduce those values [12, 13, 14]. 

Represented geometrical approach calibrate only one orientation parameter of robot axis using conjoint rotation 

in comparison with different works [3, 4, 5, 7, 8, 9], where numerical iterative method is used for whole kinematic chain 

calibration. Including more calibration parameters we need to consistently solve similar tasks, represented in section 2. 

For applying geometrical approach it is necessary to develop different from represented in section 1 methods of solving 

inverse kinematics, that takes into account conjoint rotation. 

 

3. Polynomial approximation and short function analysis 

 
Represented functions takes much time of computation due to nonlinearity. Accordingly, polynomial dependencies 

will be suitable for control with fewer computations. Linear least square technique (OLS) was used for approximation to 

determine the vector   of the polynomial coefficients  1 0

T

k kа а а . 
In general the terms of OLS condition can be expressed by: 
 

2 1 1 2

, , 1 , 1 , 0

1 1

(a) (g (a)) ( ... ) min
N N

k k

p i p k j p k j p j p

p p

F а а а а   



 

          (13) 

 

where N - total amount of function value ,i p , and p  - number of values. Then, applying methods of linear algebra, 

Jacobi matrix can be written as: 

 

1 1

1

1

(a) (a)

(a) (a)

k

N N

k

g g
a a

J

g g
a a

  
 
 

  
  
 
 

 
(14) 

 

And found polynomial coefficients as: 

 
1( )T TJ J J   (15) 

 

where   represent vector of value ,1 ,2 ,N

T

i i i      approximated by function. 

To receive function for 
1,2

6  and approximate its values, in case of non-perpendicularity compensation between 

5th and 6th axes, we identificate the next parameters using CPA-analysis: 
5 0,088  º, 

6 166,0818d   mm, 
6 31,704a   

mm. The approximation was provided for polynoms with different order. We define, that for even-numbered order 
polynoms its even-numbered coefficients equal to 0. Third order polynom has a root-mean-square error about 0,414 mm. 
Computational error in the deviation 

5  from nominal value using this polynom is about 0,002º. This orientation error 

gives us 10 µm if we recalculate it to length, which equals 
62 d . Fifth order polynom has a root-mean-square error is 

about 0,16 µm. Computational error in the deviation 
5  from nominal value using this polynom is about 0,00004º. This 

orientation error gives us 0,146 µm if we recalculate it to length, which equals
6

2 d . Approximating values of 
1,2

6  

function we receive equation of 5 axis compensation for joint coordinate 
6  of Gelios 20 robot in terms of polynom: 

 
12 5 6 3 1

5 5 56
4,618 10 1,2 10 0,091             (16) 

 

This equation can be used for direct kinematic and compensated control. Dependency graph 
1,2

6  from 
5  is presented 

on the figure 4 by red line. Blue points represent the approximated function. 
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Fig. 4. Dependency graph   from  . Red line – is function value. Blue points - is approximated function. 

 

To receive functions for 
5  and 

6 , and approximate their values, in case of non-coaxiality compensation between 4th 

and 6th axes, we identificate next parameters using CPA-analysis: 0,3263   mm, 
6 166,0351d   mm, 

4
32, 5382l   mm 

and 
6 32,212l   mm. There is a problem caused by point K (figure 3 (a)), that occurs during approximation of functions. 

This point is the frontier point, when the equations are solved. There is no 5 joint trajectory after that point, that can 

connect projections of 4th and 6th joints trajectory. The functions value which have no solutions are taken as 0, that the 

problem to be clearly visible on graphics (figure 5 (a)). These functions have suitable approximation only for 
6  within 

the limits from -150º to +150º (figure 5 (b)). Outside those limits occurs loss of accuracy and it is necessary to extrapolate 

trajectory further. Inside those limits the accuracy of approximation is similar with accuracy for non-perpendicularity 

compensation. 

 

 
 

Fig. 5. (a) Dependency graph   from   - blue line, dependency graph   from   - red line; (b) graphs of the same 

dependencies, points showed the approximated functions. 

 
In the case of non-perpendicularity compensation between 5th and 6th axes the problem of accuracy and 

extrapolation loss requirement is absent, due to the physical impossibility for the robot to reach extreme positions (close 
to ±180º). 
Due to nonlinearity of dependencies represented in this article, the values of functions will be changed if we change 

distance from center of the 6 axis rotation to the TCP point. So, if the distance is large, than values of 
i  will be minimal. 

Otherwise we will have maximal values. This approach cannot be applied, if the TCP point lies on the 6 axis. Error 

analysis of this approach depends on using CPA-analysis (because we use dynamical measurements). For joint center 

determination this kind of analysis is described in [10]. Error analysis for joint orientation determination will be described 

in future works. 
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4. Conclusion 

 
In this article for increase accuracy of an industrial robot we propose a geometrical approach for axis orientation 

parameters calibration. For determination positions of robot joint axes was used CPA-analysis and laser tracker was also 
used as measurement equipment during the identification process. Applying conjoint rotation we represent 2 operations, 
that separate decrease essential errors. In one operation the value of non-perpendicularity between 5th and 6th axes was 
decreased by 0,081º. The angle between 5th and 6th axes equals 89,993º after compensation. It decreased the error in 
comparison with initial value by 10 times. In other operations the non-coaxiality between 4th and 6th joint axes was 
decreased from value 0,342 mm to 0,142 mm. The received dependences can be approximated by polynoms. That 
decreases computation time. In the case of non-perpendicularity compensation between 5th and 6th axes function 
approximation is absolutely successful. In the case of non-coaxiality compensation between 4th and 6th axes function 
approximation can be provided only with an additional limitation on 6th joint movement. Without limitation loss of 
accuracy occurs and it is necessary to extrapolate trajectory further on an unaccounted part of the circle. This approach 
can be also applied for orientation parameters calibration of positioning tables (figure 1). 

Error analysis for joint orientation determination will be described in future works. Also, for the next applying 
of geometrical approach it is necessary to develop different from represented in section 1 methods of solving inverse 
kinematics, that takes into account conjoint rotation. 

The reported study was partially supported by RFBR, research project №15-58-78024 Итал_a. 
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