Abstract: In this research work an innovative system for quality control of large components boring process is presented in order to get zero defect parts. In traditional manufacturing, the quality control is performed at the end of the manufacturing line so that a defect produced in an initial stage spreads throughout the process. The impact of defective parts in production is particularly important in sectors such as wind energy, aerospace, chemical, etc. due to the large size and high production cost thereof. Moreover, the adjustment of production through statistical process control is inefficient due to the complexity of the parts, the high number of parameters to be controlled and the generally short series.

The new methodology is based on modeling the cutting process and in-line monitoring using telemetry hardware specifically developed and integrated into the boring head. Through readings of different sensors and preliminary process modeling, the system resets the machining strategy and working parameters to correct possible deviations due to tool wear, bending and vibration of mechanical components.

Keywords: boring, monitoring, quality control, force model, chatter

1. INTRODUCTION

In emerging sectors like chemical, aerospace, etc, where big size parts, with high added value and short production series are manufactured, the End Of Line quality control methodologies such as Six-sigma and SPC have not satisfactory results due to the high economical impact of manufacturing a defective part. In wind turbine industries for example, the quality control inspections becomes critical so they are carried out between the different manufacturing stages, producing increment in the costs and time losses due to movements between measuring and machining machines.

This work proposes a new methodology to approach to the problem solution from two different ways. One of them looks forward the elimination of the predictable defects with the correct adjustment of the process parameters [1,2]. The other one goes by the way of inline reworking of the defects that thanks to the monitoring can be detected while machining.

The new technological developments will be based on new measuring tools and sensors able to monitor real time [3] cutting parameters and the later integration of these measurements in the mechanistic models that describe the machining process. By this way, with the combination of manufacturing and verification, it will be possible to minimize the number of defective parts after manufacturing line, reducing costs and verification times. Indirectly, it will be also possible to measure the cutting parameters by the logging of the electrical motors power consumption, but the damping oncoming from the mechanical and electrical assembly will not let us take sufficiently sensitive signals to distinguish defects out of tolerance.

Even this new manufacturing idea can be universally applied to any material removing process, this work is focused on boring operation, very usual in sectors like wind-mill industry, aeronautics, chemical, etc… in the manufacturing of big size and high cost components.

Due to the high operational cost of the big machines used to manufacture big planetary gears for wind mills, the validation work has been done in the mechanical workshop of the E.U.I.T.I. Bilbao using a Kondia B700 milling machine equipped with a D’Andrea TA-125 boring head.

2. CONTROL LOOP

The traditional way to make the machining program is to predict the cutting parameters under some standard calculations, to adjust them after some machined parts in a trial and error process. After the manufacturing line, the quality control is made over the part and the possible deviations detected on the measuring process are studied to make the needed corrections on the manufacturing parameters. For example in some components of the wind mill gear boxes, the check control is made between different manufacturing steps of the same component to avoid error propagation between different stages. To ensure that each machining operation is well done becomes necessary. These manufacturing stops become really expensive and in some of the cases in which the component needs to be moved to other place to be measured, for example a Coordinate Measuring Machine, these costs become even more critical. Anyway, it continues to be economically acceptable to make all those mid-process verifications to avoid defective parts.

In the proposed new manufacturing methodology, the manufacturing and the control take place at the same
machine while the material is being removed. To achieve this objective two different control loops are defined. The first one uses the deformation of the boring bar which takes the information out coming from the strain gauge. The second one measures the vibrations using an accelerometer. Both are shown in Fig. 2 in yellow and brown colors respectively.

Even the rigidity of the machines usually used on these processes are very high, same are the manufacturing requirements. Because of that it is very important to measure the small deflections in the boring bar that produce the displacement of the tool tip and error in the manufactured part. For this issue a previously mounted on the bar and calibrated strain gauge has been used. The forces on the tool tip are transmitted to the model by the gauge signal [4], and are compared with the theoretical forces. The difference between both forces will be proportional (stiffness) to the deflection of the bar. Knowing the deflection of the bar it is possible to correct in real time the trajectory of the tool in the same value.

The vibrations on the tool tip are measured to detect the non stable machining regions. If the vibration exceeds some levels, the part will be produced with bad surface quality. To achieve expected roughness in the surface, the model will vary the cutting conditions (v_c, f, and a_p) when an excessive vibrations level is detected, to get back the stable machining.

3. METHODS AND EQUIPMENT

3.1 Experimental equipment

The experimental validation of the developments proposed in this work has been done using an OROS OR35 (NVGate Software) signal analyzer and a 086C03 impact hammer. 333B32 accelerometers have been used for the characterization of the modal parameters of the boring head and the embedded accelerometers on the tool tip. The statical calibration of the strain gauge for the three cutting force directions has been made with a PCE FG-5K dynamometer.

The previous design of the gauge and its corresponding position on the boring tool has been made with Unigraphics NX7.5.

3.2 Design of data acquisition and telemetry tooling

The hardware is based on the nanowatt series low energy 18LF4620 Microcontroller with 8Kb Ram memory and 10 bits ADC conversion channels for the gauge and accelerometer measurements logging. It has high processing speed so it can achieve 1 MHz maximum analogical reading frequency. The hardware communicates with the low energy CC1100 radiofrequency transceptor which has a maximum transmission power of 10dBm and a maximum data transmission speed of 500 KBaud on high processing speed. For the data storage it is equipped with a 16Mbit Flash memory.

The signal from the gauge is configured on Wheatstone bridge and is regulated with the MAX 4208 instrumentation amplificatory and the MAX 9916 operational for the filter and amplification functions. The system is feed by a 3,6V lithium cell in conjunction with an LDO stabilizer for adjust the output voltage to 3,3V.

4. STATIC MODEL

To define the effect of the cutting forces on the boring bar deformation [5], strain gauge sensibility characterization tests have been done independently for the three cutting forces involved.

The signal of the gauge due to the sum of the three cutting forces (F_{rad}, F_{feed}, F_{cut}) can be represented as (1) where S_{rad}, S_{feed}, S_{cut}, and S_{F}, are the sensitivities for each force and effect and G_0 the gain offset (experimental values $S_{rad}=1.218$, $S_{feed}=0.000398$, $S_{cut}=0.197$, $S_{F}=0.286$, $G_0=430$):

- Signal = 1.2185 F_{rad} + 439.45
- Signal = -0.2862 F_{feed} + 430.74
- Signal = -0.0004F_{cut}^2 + 430.59
\[G = S_R \cdot F_R - S_F \cdot F_F - S_C \cdot F_C + R_C \cdot F_C^2 + S_C \cdot F_C + G_0 \] (1)

5. DYNAMICAL STABILITY

Because of the low dynamical stiffness of the boring bar [7-9], it is essential to achieve a good quality boring operation to avoid vibrations during machining. The vibrations on the tool tip, result in an early tool wear and machine component damages [10] (bearings, gear, etc) from the process point of view, and on the other hand, in the machined part, bad looking surfaces. To be able to identify during machining the stable cutting conditions, the boring bar has been equipped with an accelerometer.

To determine the deviation on the tool tip because of the cutting forces measured with the gauge, the static force-deformation model [6] have been used:

\[\delta_T = \frac{F_F}{0.60e_5} + \frac{q_{centr} \cdot 75 + F_c}{1.68} \cdot \frac{1}{4.67} + \frac{(0.5 \cdot q_{centr} + F_c) \cdot 75}{1000 \cdot 0.75} \] (5)

The stiffness of boring head, bar and milling machine has been measured using an infinite stiffness tool for the decomposition of the cutting and bending moment effects.

In order to correct the offset in the accelerometers signal produced by the centrifugal forces, different rotating test (radial position and rotating speed combination) have been done with out removing material. Some results can be seen in the Fig. 9.
high rotational speeds, the results have been very good with errors less than 5% in the worst conditions (minimum rotation radius and speed). The gain error in the usual range of work (cutting speeds more than 100 m/min) is negligible.

While machining to be able to identify the nature (forced, self excited…) of the vibration [11,12], a dynamic characterization of the boring head and bar have been done using an impact hummer. The dominant frequencies are 1800 Hz for the bar and 300 Hz for the head approximately. In the machining experiments, acquisition frequencies up to 5 KHz will be necessary.

6. RESULTS ON MACHINED PART

In the machining tests, cutting forces, deflections and vibrations have been measured in a test tube for several cutting conditions. In Fig. 10, an image of the boring head rotating at 800 rpm (depth of cut of 0.5 mm) and the vibrations signal acquired by the accelerometer are showed.

Under certain cutting conditions, vibrations in machining have been detected, resulting in poorly finished surfaces. Self-excited vibrations (Chatter) have not been sampled in any case along the experimental validation. Except in extremely severe cutting conditions, the gauge signal is not overloaded and the radial force is measured correctly. The tool tip displacements measured were less than 0.06 mm.

Therefore, the work presented shows that the applied procedure is valid for inline control of the boring process and as future work arise, adding to the set and validation of a new gauge in order to refine the extent of the feed force, improved data acquisition in order to sample at higher frequencies and the study of self-excited vibrations to optimize the vibration model.

8. ACKNOWLEDGEMENTS

The work presented in this paper was supported within the project entitled MuProD- Innovative Proactive Quality Control System for In-Process Multi-Stage Defect Reduction- of the Seventh Framework Programme of the European Union [FoF.NMP.2011-5] and UPV/EHU under program UFI 11/29.

9. REFERENCES