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Abstract 

 

Modal analysis and parametric model identification play a fundamental role in many fields, especially for the optimization 

and vibration control of civil structures and complex mechanical systems. In the last decades these techniques have been 

frequently applied for the development of innovative cutting tools and CNC machine tools. Although several 

methodologies are available in literature for parametric model identification, there is still a lack of an effective and robust 

algorithm. In this paper a new algorithm for automatic identification of a parametric model of a linear dynamic Single 

Input Single Output system with Multiple Degrees of Freedom is presented. Some recent approaches perform the Wavelet 

decomposition of the Impulse Response in the time-frequency domain. Here a Wavelet-like decomposition of the 

Frequency Response in the frequency-damping domain is introduced for vibration modes recognition. Afterwards, 

advanced statistical approaches are applied for vibration modes selection and model generation. The method was 

successfully tested on a complicated frequency response characterized by several vibration modes, which was obtained 

from experimental modal analysis performed on a circular saw blade. 
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1. Introduction 
 

Nowadays, experimental modal analysis, system identification techniques as well as FE numerical modelling are 

fundamental tools for design, control, testing and validation of civil structures [1], mechanical components, machines and 

mechatronic devices. In the last decades, these techniques have been successfully applied for the development of 

innovative machine tools [2], cutting tools [3] and workpiece fixtures, as well as for the suppression of undesired 

vibrations occurring during machining processes [4]. 

The aim of system identification is to determine mathematical models based on a limited number of 

coefficients/parameters, in order to explain system behaviour with sufficient accuracy in the perspective of design 

optimization, real-time dynamic control or other practical purposes.  

From the seventies, a large number of identification techniques have been conceived [5][6][7][8]. They can be 

classified as Single Input Single Output (SISO), Single Input Multiple Output (SIMO) or Multiple Input Multiple Output 

(MIMO) identification techniques, depending on the number of (measured) inputs exciting the system and outputs 

extracted from it. The most common and effective SISO techniques are illustrated in Table 1. For the sake of 

completeness, it is important to notice that most of them can be easily extended to SIMO/MIMO systems or they are just 

special cases of SIMO/MIMO techniques. 
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Highlights 

Linear Least Squares Method in the Time 

Domain (Prony classical version [8]; ARMA / 
ARX / IIR+OE versions [5][9][6]) 

T M D 

No control on the nature of poles and zeros; ill conditioned and 

sensitive to noise; poor interpolation capabilities in the presence of 
MDOF systems. 

Least Squares Complex Exponential Method 

(LSCE) [5][10][7] 
T M I 

Based on Impulse Response Function (IRF) analysis. Usually ill 

conditioned and very sensitive to noise. 

Ibrahim Time Domain Method ([5][11]; Single 

Station Time Domain Method (SISO version) 

[12][13][14]) 
T M I 

Based on the analysis of free response decays – which are 

generally noisier than the IRF estimates. Need for little interaction; 

effective calculation of closely spaced modes. Tendency to give 
non-conservative damping estimates with noisy data. 

Stochastic Subspace identification Methods 

[15][16][17][18] 
T M D 

Derived from control theory and state space approaches. Rather 

accurate and reliable; relatively time consuming in comparison to 

other methods. 

Linear Least Squares Method in the Frequency 

Domain (Classical Zobel-Levy [8]; Prony 

method [5][19]; Rational Fraction Polynomial 

[5][20]) 

F M D 
There is no control on the nature of poles and zeros; it is very 

difficult to identify MDOF systems with closely spaced modes. 

Basic Methods in the Frequency Domain (Peak 

Picking Amplitude, Quadrature Response/Max. 

Quadr. Component, Kennedy-Pancu / Circle-

Fitting [5][7]) 

F S I 
Very sensitive to measurement noise and to the presence of other 

close vibration modes. Automation level is poor. 

Inverse Method (Bendent / Dobson Method 

[21][5][7]) 
F S I 

Better than other basic methods in the frequency domain, but still 

sensitive to measurement noise and to the presence of other close 
vibration modes. 

Ewins-Gleeson method [5][22] F M I 

Effective only for lightly damped structures; sensitive to the points 

chosen by the user from the FRFs, especially with noisy 

measurements. 

Wavelet-based identification methods [23-27] B M I 

Promising thank to the time-frequency filtering properties of 

wavelets. Possibly sensitive to noise, they may have some 

problems in the presence of highly damped or closely spaced 
modes. They may be time-consuming. 

T=Time; F=Frequency; B=Time-Frequency; S=Single; M=Multiple; D=Direct; I=Indirect. 

 

Table 1. Main identification techniques for Single Input Single Output linear dynamic systems with Multiple 

Degrees of Freedom 

 

Identification methods can be split into three broad categories, depending on the domain where the identification 

procedure is carried out: time domain methods, frequency domain methods and time-frequency domain methods.  

As reported by several authors [25][16][1], identification techniques in the frequency domain are usually more 

vulnerable to measurement noise than the time domain methods and they may be rather inaccurate, especially in the case 

of highly damped systems with severe modal interference. In addition, many of them (for instance, the Gaukroger-

Skingle-Heron (GSH) method [28], the Ewins-Gleeson method [22] and other basic frequency domain methods [5]) are 

affected by a low level of automation, i.e. their performance is strongly dependent on the choices and expertise of the 

user.  

At the other side, time domain methods frequently provide accurate results if the measured responses are not 

severely disturbed by noise. Among the different time domain techniques, the Stochastic Subspace Identification approach 
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seems to be the most accurate and insensitive to measurement noise, nevertheless it may require longer computation time 

than other methods [16][1].  

Basically, vibration mode detection can be performed in two different ways: each vibration mode can be analysed 

and identified separately – single peak detection approach – or all the vibration modes are identified concurrently – 

multiple peak detection approach. When working in the time domain, the multiple peak detection is typically adopted 

since it is very difficult to isolate the effect of a single mode. 

Let us now consider a SISO linear dynamic system with Multiple Degrees Of Freedom (MDOF), such as a 

vibrating mechanical structure stressed by a force F (applied at a fixed point along a fixed direction) and oscillating with 

vibration u (at a given inspection point and along a given direction). Under these hypotheses, the model Wmod 

approximating the experimental frequency response Wexp is usually expressed by a rational polynomial in the frequency 

domain, that is 

 

𝑊𝑒𝑥𝑝(𝑗𝜔) =
𝑢(𝑗𝜔)

𝐹(𝑗𝜔)
≈ 𝑊𝑚𝑜𝑑(𝑗𝜔) =

∑ 𝑏𝑟(𝑗𝜔)
𝑟𝑍

𝑟=0

∑ 𝑎𝑘(𝑗𝜔)
𝑘𝑃

𝑘=0

 (1) 

 

 

where the coefficients br and ak have to be determined through the identification procedure.  Usually, the number of zeros 

Z appearing in Equation (1) is strictly smaller than the number of poles P, representing model order. 

Alternatively, the model can be expressed as a linear superposition of simple harmonic oscillators, as follows 

 

𝑊𝑚𝑜𝑑(𝑗𝜔) = ∑
𝐺ℎ

(𝑗𝜔 𝜔𝑛,ℎ⁄ )2 + 2𝜉ℎ𝜔𝑛,ℎ(𝑗𝜔 𝜔𝑛,ℎ⁄ ) + 1

𝑀

ℎ=1

 (2) 

 

where Gh is the static compliance, ωn,h is the natural pulsation and ξh is the damping coefficient of the hth harmonic 

oscillator, and M is the total number of vibration modes composing the model. When Equation (2) is assumed, M pairs of 

complex conjugate poles are present. In general, the last model formulation is strongly preferred since it is derived from 

well-known physical principles governing the dynamic behavior of vibrating mechanical structures. When coefficients of 

Equation (1) are the unknowns of the linear regression performed by the identification procedure, the algorithm is 

classified as “direct”. Otherwise, when the modal parameters of Equation (2) are the target unknowns, the algorithm is 

classified as “indirect”. Indirect algorithms are generally more effective and reliable, since they are less sensitive to 

measurement noise. For instance, direct algorithms such as the Linear Least Squares Method in the Time Domain and the 

Linear Least Squares Method in the Frequency Domain may easily identify unstable poles or anomalous zeros with 

positive real parts. On the contrary, these problems may rarely arise when using indirect algorithms, because the physically 

based model structure of Equation (2) is assumed from the beginning.  

A common problem affecting identification algorithms is model order selection. In most cases, model order is 

usually unknown. Moreover, some false vibration modes improving mathematical interpolation of noisy experimental 

data can be recognized as structural modes, although they have no physical meaning. The classical tool for model selection 

is the stabilization chart, where the characteristics of the obtained modes are analysed by increasing model order [7][18]. 

Other powerful techniques are only available in case of SIMO/MIMO identification algorithms, such as the Modal 

Assurance Criterion (MAC), which is based on the comparison between the mode eigenshapes obtained from 

identification and those simulated through FE methods [7]. Specific techniques such as the random decrement technique 

[29] or the approach proposed by Mohanty et al. in [13] can be applied for removing undesired harmonics from 

experimental data, especially when performing Operational Modal Analysis, i.e. when the input excitation forces are 

unknown or cannot be observed.  

In recent years, some new techniques for model identification operating in the time-frequency domain have been 

developed. They are based on the analysis of the Impulse Response through different kinds of discrete and continuous 

Wavelet Transforms [23-27]. The success of these approaches relies in the intrinsic capability of the Wavelet Transform 

of analysing non-stationary signals, hence their effectiveness for mode decoupling (even when there is a strong dynamic 

interference) and for noise suppression.  

In this paper, an original SISO identification technique is presented for MDOF linear dynamic systems expressed 

in the structural form of Equation (2). The core of the algorithm was inspired by the Wavelet decomposition methodology. 

Despite other methods found in literature – which analyse the Impulse Response in the conventional time-frequency 

domain thorough the Wavelet Transform – here a Wavelet-like decomposition of the Frequency Response is carried out 

in the frequency-damping domain. By so doing, the main vibration modes composing the Frequency Response can be 

recognized. Afterwards, advanced statistical tools such as the linear stepwise regression are applied for mode selection 

and for model generation. 
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2. Wavelet-inspired algorithm for modal parameters identification 

 

At the beginning, none of the harmonic oscillators composing the model frequency response Wmod of Equation 

(2) are known. The only available information is the experimental frequency response, provided in a non-parametric form 

called Empirical Transfer Function Estimate (ETFE) which is basically a Discrete Fourier Transform representing the 

average dynamic behavior of the system in the frequency domain.  

The proposed algorithm is capable to detect all the vibrations modes step by step by applying the following procedure. 

Let us split the model frequency response in two parts, the (unknown) generic kth harmonic oscillator and the (unknown) 

residual part Wres, as follows: 

 

𝑊𝑚𝑜𝑑(𝑗𝜔) = 𝐺𝑘 [
1

(𝑗𝜔 𝜔𝑛,𝑘⁄ )
2
+ 2𝜉𝑘𝜔𝑛,𝑘(𝑗𝜔 𝜔𝑛,𝑘⁄ ) + 1

]
⏟                        

𝑤𝑘(𝑗𝜔)

+∑
𝐺ℎ

(𝑗𝜔 𝜔𝑛,ℎ⁄ )
2
+ 2𝜉ℎ𝜔𝑛,ℎ(𝑗𝜔 𝜔𝑛,ℎ⁄ ) + 1ℎ≠𝑘⏟                          
𝑊𝑟𝑒𝑠(𝑗𝜔)

 
(3) 

 

where the kth mode is further decomposed as the product of wk (which does only depend on the natural pulsation ωn,k and 

on the damping coefficient ξk but in a strongly non-linear way) and the static compliance Gk. Let us fix the values of both 

ωn,k and ξk while keeping Gk as a free parameter. Let us approximate the residual part Wres by Taylor expansion in the 

neighborhood of the natural pulsation ωn,k, as follows 

 

𝑊𝑒𝑥𝑝(𝑗𝜔)⏟      
∈ℂ

≈ 𝑊𝑚𝑜𝑑(𝑗𝜔)⏟      
∈ℂ

≅ 𝐺𝑘⏟
∈ℝ

𝑤𝑘(𝑗𝜔)⏟    
∈ℂ

+𝑊𝑟𝑒𝑠(𝜔𝑛,𝑘)⏟      
∈ℂ

+
𝜕𝑊𝑟𝑒𝑠

𝜕𝜔
|
(𝜔𝑛,𝑘)⏟      

∈ℂ

(𝜔 − 𝜔𝑛,𝑘)⏟      
∈ℝ

      𝜔 ≈ 𝜔𝑛,𝑘  
(4) 

 

In order to simplify notation, let us define 

 

{
 
 

 
 𝑅𝜔,𝑒𝑥𝑝 = 𝑅𝑒{𝑊𝑒𝑥𝑝

(𝑗𝜔)}

𝐼𝜔,𝑒𝑥𝑝 = 𝐼𝑚{𝑊𝑒𝑥𝑝(𝑗𝜔)}

𝑅𝜔,𝑘 = 𝑅𝑒{𝑤𝑘(𝑗𝜔)}

𝐼𝜔,𝑘 = 𝐼𝑚{𝑤𝑘(𝑗𝜔)}

 (5) 

 

After some algebraic manipulations and after separation of the real from the imaginary part of Equation (4) one obtains 

 

{
𝑅𝜔,𝑒𝑥𝑝 ≈ 𝐺𝑘𝑅𝜔,𝑘 + 𝑎0 + 𝑎1𝜔

𝐼𝜔,𝑒𝑥𝑝 ≈ 𝐺𝑘𝐼𝜔,𝑘 + 𝑏0 + 𝑏1𝜔
     𝜔 ≈ 𝜔𝑛,𝑘 (6) 

 

where a0, a1, b0, b1 are real constants depending on the natural pulsation ωn,k. The frequency bandwidth which is strongly 

influenced by the kth harmonic oscillator can be expressed by  

 

𝜔 ∈ [𝜔𝑛,𝑘(1 − 𝛼𝜉𝑘),𝜔𝑛,𝑘(1 + 𝛼𝜉𝑘)]  (7) 

 

where the constant α was set to 3 after some preliminary analysis. As expected, the collocation of the harmonic oscillator 

depends on its natural pulsation, while the bandwidth width depends on damping. In other words, natural pulsation acts 

as the time localization parameter while damping acts as the scale parameter influencing Mother Wavelet in the 

conventional Wavelet approach.  

It is finally possible to assemble a linear system by considering all the discrete frequencies ω1,…,ωq composing the  

experimental frequency response which are within the frequency bandwidth (7). The result is 

 

[
 
 
 
 
 
 
𝑅𝜔1,𝑒𝑥𝑝
⋮

𝑅𝜔𝑞,𝑒𝑥𝑝
𝐼𝜔1,𝑒𝑥𝑝
⋮

𝐼𝜔𝑞,𝑒𝑥𝑝 ]
 
 
 
 
 
 

≈

[
 
 
 
 
 
𝑅𝜔1,𝑘 1 𝜔1 0 0

⋮ ⋮ ⋮ ⋮ ⋮
𝑅𝜔𝑞,𝑘 1 𝜔𝑞 0 0

𝐼𝜔1,𝑘 0 0 1 𝜔1
⋮ ⋮ ⋮ ⋮ ⋮

𝐼𝜔𝑞,𝑘 0 0 1 𝜔𝑞]
 
 
 
 
 

[
 
 
 
 
𝐺𝑘
𝑎0
𝑎1
𝑏0
𝑏1 ]
 
 
 
 

  (8) 

 

The unknown coefficients of Equation (8) are determined by multiple linear regression. Afterwards, the real and 

imaginary parts can be separated, in order to compute the vectors 
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𝑹𝑘,𝑒𝑥𝑝 = [

𝑅𝜔1,𝑒𝑥𝑝
⋮

𝑅𝜔𝑞,𝑒𝑥𝑝

] − [

1 𝜔1
⋮ ⋮
1 𝜔𝑞

] [
𝑎0
𝑎1
] ≈ [

𝑅𝜔1,𝑘
⋮

𝑅𝜔𝑞,𝑘

] 𝐺𝑘 = 𝑹𝑘,𝑚𝑜𝑑 (9) 

 

and similarly 

 

𝑰𝑘,𝑒𝑥𝑝 = [

𝐼𝜔1,𝑒𝑥𝑝
⋮

𝐼𝜔𝑞,𝑒𝑥𝑝

] − [

1 𝜔1
⋮ ⋮
1 𝜔𝑞

] [
𝑏0
𝑏1
] ≈ [

𝐼𝜔1,𝑘
⋮

𝐼𝜔𝑞,𝑘

] 𝐺𝑘 = 𝑰𝑘,𝑚𝑜𝑑  (10) 

 

These four vectors are finally used to determine the degree of correlation between the kth harmonic oscillator – having 

natural pulsation ωn,k and damping coefficient ξk – and the experimental frequency response purified from the contribution 

of all the other oscillators. Specifically, the following indicator was introduced:  

 

Δ𝑅𝑘
2 =

1

2
[𝑅2(𝑹𝑘,𝑒𝑥𝑝, 𝑹𝑘,𝑚𝑜𝑑) + 𝑅

2(𝑰𝑘,𝑒𝑥𝑝 , 𝑰𝑘,𝑚𝑜𝑑)],       0 ≤ Δ𝑅𝑘
2 ≤ 1  (11) 

 
which has demonstrated to be very effective for mode identification. 

The aforesaid procedure is then iterated by varying the combination of modal parameters (ωn,k,ξk) within an 

admissible region 

(𝜔𝑛,𝑘, 𝜉𝑘) ∈ 𝐷 = [𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥] × [𝜉𝑚𝑖𝑛 , 𝜉𝑚𝑎𝑥] (12) 

which has to be preliminarily defined by taking into account the quality of the available experimental data and the typical 

characteristics of the system under examination. For instance, the coherence function associated to the measured 

frequency response will limit the admissible frequency bandwidth.  

Before starting computation, domain (12) is split into an uneven grid, according to some rules derived from physical and 

numerical observations. 

First, for a given damping coefficient the frequency interval should be evenly discretized in logarithmic scale. 

This implies a non-uniform subdivision in natural scale, with increasing subinterval amplitude 

Δ𝜔𝑛,𝑘 = 𝜔𝑛,𝑘+1 − 𝜔𝑛,𝑘 = 𝛽𝜉𝑘𝜔𝑛,𝑘    (13) 

Similarly, the damping coefficient interval should be evenly discretized in logarithmic scale, again implying an 

increasing subinterval amplitude  

Δ𝜉𝑘 = 𝜉𝑘+1 − 𝜉𝑘 = 𝛾𝜉𝑘     (14) 

As a rule of thumb, grid parameter β should be smaller than 1/4 while γ should be smaller than 1/10. However, they can 

be further refined by trial and error, until a satisfactory interpolation result is achieved.  

After computation, the map ΔRk
2(ωn,k,ξk) is available and can be analyzed for the automatic and robust selection of the 

most important vibration modes composing the experimental frequency response.  

The best candidates are indeed the points (ωn,k,ξk) corresponding to local maxima of the ΔRk
2 function. They can be found 

within the closed regions of the (ωn,k,ξk) plane characterized by 

Δ𝑅𝑘
2(𝜔𝑛,𝑘 , 𝜉𝑘) ≥ 𝜂    (15) 

 

When there is a good signal to noise ratio, η can be set around 0.9. However, this parameter may need some 

adjustment when experimental data are contaminated by considerable noise.  

For each mode and for each pulsation within the frequency range of interest, the real and imaginary parts of the wk 

oscillators are computed. Eventually, Equation (2) is rewritten as the linear system 

[
 
 
 
 
 
 
𝑅𝜔1,𝑒𝑥𝑝
⋮

𝑅𝜔𝑞,𝑒𝑥𝑝
𝐼𝜔1,𝑒𝑥𝑝
⋮

𝐼𝜔𝑞,𝑒𝑥𝑝 ]
 
 
 
 
 
 

≈

[
 
 
 
 
 
 
𝑅𝜔1,1 𝑅𝜔1,2 ⋯ 𝑅𝜔1,𝑀
⋮ ⋮ ⋮

𝑅𝜔𝑞,1 𝑅𝜔𝑞,2 ⋯ 𝑅𝜔𝑞,𝑀
𝐼𝜔1,1 𝐼𝜔1,2 ⋯ 𝐼𝜔1,𝑀
⋮ ⋮ ⋮

𝐼𝜔𝑞,1 𝐼𝜔𝑞,2 ⋯ 𝐼𝜔𝑞,𝑀 ]
 
 
 
 
 
 

[

𝐺1
𝐺2
⋮
𝐺𝑀

],      𝜔1 ≥ 𝜔𝑚𝑖𝑛 , 𝜔𝑞 ≤ 𝜔𝑚𝑎𝑥 (16) 
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The system (16) is analyzed by the stepwise regression algorithm [30], which is able to recognize the most 

energetic physical modes while concurrently eliminating other modes. Neglected modes are excluded by the algorithm 

since they do not give a significant contribution to explain the variability of the experimental frequency response. 

The following criterion is then applied for further screening of the candidate modes:  

[mode (𝜔𝑛,𝑘 , 𝜉𝑘, 𝐺𝑘) is kept by stepwise regression]    AND    [|𝐺𝑘| ≥ 𝜈𝐺𝑡𝑜𝑡,𝑒𝑥𝑝 , with 𝜈 ≥ 0.1%] (17) 

The second condition can also be written in order to keep only strictly positive or strictly negative static 

compliances, when their sign is well known from physical considerations. For instance, all static compliances should be 

strictly positive when considering a SISO vibrating mechanical system with one force input and one vibration output 

located at the same point, parallel and equally oriented, since all eigenmodes will be locally deformed in the same direction 

of the input force. This screening phase should be repeated at least once in order to determine a minimal set of significant 

harmonic oscillators. After eliminating the negligible modes, the last step of the algorithm can be accomplished in order 

to determine the final model. This can be achieved by performing a weighted linear regression on the selected vibration 

modes. For instance, higher weights can be assigned in the low-frequency range and in the neighborhood of the resonance 

frequencies, by also taking into account the behavior of the coherence function. By so doing, both the total static 

compliance and the resonance peaks will be well interpolated.  

It has to be pointed out that model order determination is automatically accomplished by the previous steps, 

without the need of other tools such as the stabilization diagrams.  

 

3. Application to a case study 

 

In order to evaluate the effectiveness of the proposed approach, it was applied to a complicated frequency 

response derived from modal analysis measurements performed on a circular blade. The blade under examination is used 

for wood saw cutting.   

Transverse vibrations of circular blades during the cutting process may significantly influence the cutting 

conditions of the engaged teeth, thus they may strongly affect part quality and tool life or they may even hinder process 

feasibility. For this reason, model identification plays a crucial role in this field, in the perspective of developing better 

circular blades and for cutting process optimization.  

 

 
 

Fig. 1. Schematic picture describing the experimental setup for modal analysis on a circular blade by means of pulse 

testing technique 

 

The transverse dynamic compliance of a circular blade can be estimated by performing modal analysis in steady 

i.e. non-rotating configuration, although the real dynamics may slightly depend on spindle rotational speed due to 

gyroscopic and centrifugal effects. For the sake of simplicity, here only the steady configuration was considered. In detail, 

a circular blade made of alloy steel, with external diameter Dext of about 260 mm, uniform thickness s of about 2 mm, 

number of teeth zt = 40 was clamped on a special testing flange with external diameter Dfla of about 85 mm, similarly to 

Figure 1.  

Input force F was applied on blade periphery perpendicularly to blade plane by using an impact hammer Dytran 

type 5800B4, with sensitivity of 2.41mV/N, connected to an amplifier Kistler type 5134B. Blade vibration was measured 

by a non-contact eddy current probe Micro-Epsilon type ES1 (measuring range1 mm, sensitivity ≈10 mV/µm) connected 

to eddy NCDT 3010-M controller. At the same time, the transversal blade acceleration – at approximately the same 

inspection point – was detected by a triaxial piezoelectric accelerometer Kistler 8763B100 (sensitivity ≈50mV/g), 

connected to the same amplifier used for the impact hammer. Regarding data acquisition, all sensor signals were sampled 

at 20 kHz by using a National Instruments device (cDAQ-9178 with NI 9215 modules) connected via USB to a PC. Data 

were elaborated in MathWorks MATLAB environment.  
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The Empirical Transfer Function Estimate – ETFE – is illustrated in Figure 2(a), together with the 

corresponding coherence function. The accelerometer signal was taken as a reference for transfer function computation. 

The displacement probe signal was mainly used for comparison and correction of the obtained frequency response in 

the very low frequency range, where the accelerometer output is affect by a bad signal to noise ratio. 

The experimental frequency response is characterized by considerable resonance peaks above 200 Hz which 

are fairly well in accordance with basic FEM simulations of blade structural dynamics. Minor resonances located in the 

low-frequency range are likely due to the dynamic interaction between the blade and the fixture device. 

By applying the wavelet-like approach described in the previous section (Equations 3-15), the ΔRk
2 map of Figure 

2(b) was obtained. In the map, several regions with a high degree of correlation are visible. Precisely, 18 local maxima 

were found with ΔRk
2 > 0.9 within the frequency range of interest 20 – 1500 Hz. After the screening phase carried out by 

the stepwise regression algorithm and by the other criterion of Equation (17), only 12 vibration modes were kept, which 

are listed in Table 2. Accordingly, the final model was built on a minimum number of significant vibration modes, which 

dominate the experimental measurement. It can be noticed that very close vibration modes were correctly recognized, 

such as the three modes located around 228 Hz. It has to be recalled that several state of the art algorithms tend to fail in 

the presence of very closed vibration modes [5]. 

. 

 
  

Fig. 2. (a): Amplitude of the Empirical Transfer Function Estimate – ETFE – derived from experimental modal analysis 

on the circular blade. (b)-(c): Identification of single harmonic oscillators which are most correlated with the 

experimental frequency response (ETFE) by means of the innovative Wavelet-inspired transformation 

 

Model and experimental transfer function are compared in Figure 3, showing an excellent qualitative agreement 

between all the considered quantities. In order to test quantitatively model adequacy, the squared correlation coefficient 

R2 between the model and the experimental counterpart was calculated by considering the whole frequency range of 

interest. For this purpose, the real and imaginary parts were compared separately. For both of them an outstanding value 

of R2 greater than 0.968 was obtained. 

In order to further test model adequacy, the relative error between model and experimental frequency response 

was computed as follows 

𝐸𝑟𝑒𝑙(𝑗𝜔) = |
𝑊𝑚𝑜𝑑(𝑗𝜔) −𝑊𝑒𝑥𝑝(𝑗𝜔)

𝑊𝑒𝑥𝑝(𝑗𝜔)
|      [%] (18) 

A weighted average of this error was computed, that is 

𝜇𝐸,𝑟𝑒𝑙 =
∫𝐸𝑟𝑒𝑙(𝑗𝜔)|𝑊𝑒𝑥𝑝(𝑗𝜔)|𝑑𝜔

∫|𝑊𝑒𝑥𝑝(𝑗𝜔)|𝑑𝜔
      [%] (19) 
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By so doing, the relative error affecting the resonance peaks is enhanced while concurrently reducing the 

importance of the frequency intervals where the experimental response is very small. In the current case, a satisfactory 

weighted average of 16.3% was obtained, proving the effectiveness of the proposed algorithm. 

 
Mode # 1 2 3 4 5 6 7 8 9 10 11 12 

Nat. freq. ωn,k [Hz] 38.1 185.8 223.3 228.6 232.3 291.9 459.9 462.9 707.6 725.3 991.1 1425.7 

Damping ξk [ ] 1.04E-01 1.21E-02 5.48E-03 3.23E-03 3.23E-03 1.90E-03 9.80E-04 8.58E-04 5.77E-04 6.59E-04 5.77E-04 2.48E-03 

Static compl. Gk 

[µm/N] 
5.65E-01 9.72E-02 9.34E-01 4.80E-01 1.83E-01 5.40E-01 1.41E-01 5.78E-02 1.24E-02 5.89E-02 1.67E-02 3.12E-03 

Rel. compl. Gk/Gtot,exp 

[%] 
18.3 3.1 30.2 15.5 5.9 17.5 4.6 1.9 0.4 1.9 0.5 0.1 

 

Table 2. List of the vibration modes composing the final model 

 

 
Fig. 3. Comparison between experimental frequency response (ETFE) and the obtained parametric model determined 

through the identification procedure 

 

4. Conclusions 

 

In this paper an original algorithm for automatic and robust identification of a linear SISO MDOF dynamic 

model of an experimental frequency response was presented. One key hypothesis was that the experimental frequency 

response can be decomposed into a sum of simple harmonic oscillators, which is usually the case when considering 

mechanical vibrating systems.   

The algorithm consists in two phases: modes identification and modes selection. In the first phase, a wavelet-

inspired approach is used for the identification in the frequency-damping domain of some promising candidates among 

all possible simple harmonic oscillators. In the second phase, a robust screening is performed by applying some 

statistical criteria.  

The algorithm was successfully tested on a complicated experimental frequency response representing the 

transversal dynamic behavior of a circular blade clamped by a stiff fixture. The obtained model was capable of 

representing the static compliance and the resonance peaks with good accuracy. Actually, the interpolation was 

satisfactory in the whole frequency range of interest. Moreover, very close resonance peaks were correctly recognized. 

It would be of further interest to strictly compare the proposed approach with other state of the art algorithms 

in terms of accuracy, computational time and automation level, also by considering other experimental case studies. 
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